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ABSTRACT

Consideration is given to the performance characteristics

of an AC magnetohydrodynamic power generator. A rotating

magnetic field is imposed on the vortex flow of an electrically

conducting fluid, which is injected tangentially into an annulus

formed by two nonconducting concentric cylinders and two non-

conducting end plates. A perturbation technique is used to

determine the two dimensional velocity and three dimensional

electromagnetic field and current distributions. Finally, the

generated power, the ohmic losses, the effective power and the

electrical efficiency of the converter system are calculated.
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INTRODUCTION

_D GENERATOR CONCEPT

The direct conversion of thermal energy into electrical

power by magnetohydrodynamic (MHD) power generators is attracting

a great deal of attention presently. _he high temperatures

associated with such energy sources as nuclear reactors and solar

furnaces prevent the direct application of the conventional

energy converters such as gas or steam turbines. Furthermore,

the development of new converter devices is highly motivated by

the fact that the thermal efficiency of the converter system

increases with the temperature at which the power conversion

takes place.

For the MHD Generators the following general concept has

been developed:

Thermal energy is transferred from a high temperature

source to a working fluid increasing its internal and kinetic

energies. The fluid is made electrically conducting either

by thermal ionization or by seeding conducting plasma into it

or by both processes simultaneously, and it is passed through

a magnetic field. As the result of interaction of the magnetic

field with the conducting fluid an electromotive force is in-

duced which in turn produces an electric current distribution

in the conducting medium.
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If the magnetic field and the flow pattern are so chosen

that the induced currents are steady in time DCpower generation

results and the energy can be extracted from the fluid through

electrodes in the walls of the flow duct.

If the induced currents are periodic functions of time,

ACpower is generated and it can be extracted either throu!_h

electrodes or, by utilizing the magnetic flux linkage, through

the exciting field coils. In the last case the _HDgenerator

operates on the principles of a conventional induction generator.

As the result of the energy extraction and someirre-

versible processes inherent to the generator operation, the

total pressure of the fluid decreases, and conventional con-

verter devices maybecomeapplicable at the lower energy (tempe-

rature) levels.

REVIEWOF PREVIOUSINVESTIGATIONS

The concept of MHDpower generator is not new; it was

conceived first by Faraday, who proposed to utilize the motion

of ocean-water in the earth's magnetic field for power genera-

 ionZ-tJ.
Recently, with the advent of high temperature energy

sources, the idea of direct conversion of flow-enthalpy into

electrical energy has begun to undergo a vigorous investigation.

Numbers in brackets indicate References.
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From the beginning, most of the attention was focused on

DC generators because of their relative simplicity. In a@dition,

DC _zenerators have some operational advantage over the compara-

tive AC devices, especially in the case of large scale power

generation.

Among others, R. J. Rosa, A. R. Kantrowitz and T. R. Brogan

have investigated the general feasibility and performance cha-

racteristics of l_ DC generators (see _/-2_7 to /-5 7.) An expe-

rimental generator operating with plasma produced by an arc wind

tunnel was built and operated by them at AVCO Laboratory in

Everett, Massachusetts. G.W. Sutton of General Electric Co.

/-6.7, /-7 7 presented a detailed analysis of a channel-type _iHD

DC generator in 1959. The analysis is restricted to the dis-

cussion of the one-dimensional channel-type motion of an inviscid

conducting fluid in the presence of a normal magnetic field.

Similar investigations were performed by S. Way of

Westinghouse Research Laboratories _-8__, _/-9#, who used com-

bustion-product gases as the working medium in a channel-type

linear generator. The performance characteristics obtained by

him were about half of those theoretically predicted.

A different model for DC power generation was proposed

by J. McCune of Aeronautical Research Associates of Princeton _/_O_,

who conducted both theoretical and experimental investigations

on a vortex flow formed between two concentric cylinders placed

in a steady axial magnetic field. The end-plate effects were
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neglected in this analysis. The results obtained by McCune

indicate the general feasibility of the device for power

gene rat ion.

DC-generation systems have some inherent disadvantages.

First of all, the use of large scale DC generators _Jitnin the

existing commercial power systems would require the installation

of a ntu_ber of large, expensive DC-AC alternators. Furthermore,

the DC generator cycle itself possesses a nw_ber of undesirable

characteristics such as the electron absorption by the elec-

trodes at the operational temperatures. The necessity of

effective electrode cooling raises some additional problems _/-ll_7.

In view of these disadvantages i_iorerecently attention

was given to the idea of olectrodeless li]_Dgenerators producing

directly AC currents and utilizing magnetic flux linkage instead

of electrodes.

A relatively small amount of work has been done so far

on the development of AC-_H{D generators. This is probably due

to the fact that the induction generators have a number of

unfavorable operational characteristics, too; some of them are

considered to be serious enough to cause doubts about the general

feasibility of such devices for large scale power generation.

For example, it can be shown that the power generated by any

_D-device is in general proportional to the conductivity of the

working fluid, the square of its velocity and to the square of the

magnetic field strength interacting with the fluid:



p _V2B 2
g

On the other hand, the reactive power (_r) to be supplied for

maintaining an alternating magnetic field for ACpower genera-

tion is proportional to 6_)B2//A_ ; where //_ is the mag-

netic permeability of the conductor and _J/2_ is the

frequency of the exciting field. (One may note here that the

reactive power inherent to AC generators has no counterpart

in DC-devices.) Thus the ratio of the po_er produced to the

reactive power supplied is given for an AC generator as

P R
-g o< m

where Rm _ _/QVL is defined as the magnetic Reynolds number
/

and CAD* a CAJL/V is a dimensionless frequency parsmeter

and L is a characteristic length in the system. Hence, for

CJ* _ O(1) (a realistic value for commercial generator systems)

the ratio of the power prodnced to the reactive power is _ro-

portional to the mao_nitude of the magnetic Reynolds number.

Practical values of R in F_D generator application range from
m

O.O1 to O.1. Hence, the reactive power supplied to the system is

unduly high, as compared to the a_ount of power generated within

the system. The large reactive power requires the use of costly

capacitive equipment on one hand, and it causes substantial
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reactive losses in the field coils on the other hand. These

losses can partially be compensated by installing capacitor-

banks in the circuit. The increase of capital cost due to

such compensation, however, is not in proportion to the net

power gained.

Recently, in connection with the appearance of super-

conductors with associated high critical fields and high

current carrying capacities, and of cryogenic capacitors with

high quality factors, the interest in MHD-AC generators has

been renewed. A limited number of papers have been published

on the subject in more recent times.

I. Bernstein of the Forrestal Research Center at

Princeton University, and others _12__, investigated the slu_

motion (- constant velocity) of a conducting medium between

two infinite plates and, in particular, its interaction with

a time dependent magnetic field travelling parallel to the

direction of motion of the conductor. The electrical effi-

ciency corresponding to max. power output was found to be 1/2.

H. Wood,on of Massachusetts Institute of Technology _/-13_7

analyzed the interaction of a plasma slug ( or a sequence of

plasma slugs) travelling downstream in a shock tube with sole-

noidal magnetic field. He obtained some basic requirements for

AC-generator action as applied to MHD generator devices.
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A comprehensive description of the basic principles

of MHD induction generators was given in the lecture series on

Engineering _HqD offered by flIT in june 1961_/-1__7.

SUBJECT AND SCOPE OF _L_ PRESENT WORK

In the following, an induction type MHD generator will

be analyzed whose operation is based on the interaction of a

"rotating" magnetic field with a vortex flow of a conducting

fluid rotating in the plane of the magnetic flux lines. The choice

of this system is suggested by its relative compactness and the

limited work done previously on the analysis of rotating }]_D

fields.

The "rotating" magnetic field is really the result of

superposition of two pulsating fields with a phase shift bet-

ween them:

B = B sin _ ; B _ B cos cot
x o y o

Superimposing Bx and By , it appears to a stationary
.-@

observer that a field vector of constant magnitude Bo

"rotates" in the x-y plane _/th a frequency equal to _ .

The same induction field can be described in cylindrical-

polar coordinate system as

All symbols are defined in the "List of Symbols".
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A

- r B cos(_t- _)Bo o

+ _B 0 sin(cJt - ¢)

Such a rotating field is produced, for example, by poly-

phase windings used in conventional induction _enerators.

The generator chamber is formed by two nonconducting

coaxial cylindrical walls and two parallel non-conducting end

plates (Fig. i). ZAL

_R,_
END PLATE

END P TE _i0

Fig. i.

The working fluid is injected tangentially at the outer

radius of the cylindrical annulus and it leaves the chamber in
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the radial direction through the ports on the inner cylinder

(Fig.2).

Vi

VI V I - INJECTION

V0 EXIT VELOCITY

VI

VELOCITY

Fig. 2.

Rotation of the il_id faster than the magnetic field

will induce an alternating current distribution in the "fluid

rotor" which will have its own magnetic field. The induced

field interacts directly with the exciting polyphase windings,

thus the energy can be extracted from the system through the

same field coils which induce the primary field. In this

sense the device acts as a conventional AC induction generator.

For the configuration described above, the three-dimen-

sional electromagnetic fields, the velocity and the current

distributions will be determined by approximate techniques.
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FoLlowing this, the power generated and the ohmic losses

will be calculated. This in turn will furnish the necessary

information about the performance characteristics and the in-

ternal electrical efficiency of the generator cycle.

Finally, an attempt will be made to determine the optimal

param_ters of the system corresponding to maximum operating

efficiency.

AS3_TPTIONS AND LD_!TATICNS

The complexity of the three-dimensional problem described

in the previous section necessitates the introduction of a series

of simplifying assumptions in the analytic treatment.

Since the intensity of interaction between the hydro-

dynamic and electromagnetic fields is determined by the

magnitude of the magnetic F_ynolds n_nber, Rm, and Rm << I in

the case of M]_3 generators due to the low electrical conductivity

of the available working media, the applicability and usefulness

of perturbation technique with Rm as characteristic parameter

becomes apparent •

Thus the analysis will be restricted to cases when the

assumption Rm << i holds and series expansion in positive

powers of R will be applied to the various field quantities.
m

The present work is limited to the computation of the

zeroth and first order terms where the zeroth order field distri-

butions correspond to the complete absence of interaction between
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the magnetic and velocity fields. The higher order terms intro-

duce corrections to the zeroth order quantities.

As will be shown later, for acceptable convergence of

the higher order terms , restriction must be made on an additional

electromagnetic parameter; the magnetic pressure coefficient

defined as S -_ Bo2//_o _V 2 must be of unit-order (_ is

the fluid density and V is a characteristic velocity in the

hydrodynamic field).

The above restrictions imposed on Rm and S assure

adequate accuracy in the numerical computations even if only

the zeroth and first order terms are considered, as was shown by

Rossow E_7.

Although the electrical conductivity of a plasma obtained

by thermal ionization is a function of the temperature which

changes as the power is being extracted, it will be assumed that

the generation cycle can be described in terms of an average --

or effective electrical conductivity which can be considered as

a constant during the process. Such an approximation yields

reasonable results if the temperature change during a cycle is

not very large. In MHD generators the power extracted is appro-

ximately equal to (or at least of the same order as) the ohmic

losses within the working substance, hence substantial tempera-

ture changes may not be expected in general.

The Hall effects are completely neglected throughout the

present analysis. Thus the electrical conductivity will be treated
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as a scalar quantity. This in turn implies sufficiently high

pressures for the working mediumso that the product of the

electron Larmour frequency with the electron collision time

will have a value small comparedto unity (see Ref. /-2 7).

This is a reasonable approximation for the case of IvieDgenerator

systems.

Complete axial symmetry is assumed for the injection and

exhmust systems only. Such systems can practically be obtained,

for example, by injecting the plasma through the _Jall of a

rotating porous cylinder and letting it to leave the _enerator

cilamber through a stationary porous cylinder, the last being

coaxial with the first.

The present analysis will be restricted to the discussion

of laminar flow regimes. Such an approach was shown to be

realistic by J. McCune (see Ref. _/-10_7), whose results indi-

cate also the general feasibility of laminar vortex flow patterns

in I._D generator application.

The presence of the hydrodynamic boundary layers on the

end plates will be completely neglected. Although, due to this

simplification, an exact solution for the two-dimensional

zeroth order hydrodynamic (Navier-Stokes) equations becomes

available in the (r , _ ) plane, only the inviscid (potential)

solution will be applied in the subsequent determination of the

electromagnetic field distributions. This is necessitated by the

difficulties introduced in the subsequent mathematical development
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by the presence of terms containing the hydrodynamic Reynolds

number as a parameter.

One has to makeclear distinction at this point between

the end-plate effects connected with the hydrodynamic fields

and those connected with the electromagnetic field distributions.

The neglect of the hydrodynamic boundary layers on the

end-plates is justified by the fact that the primary fluid motion

is a plane motion directed parallel to the end plates. Thus

the disturbance introduced on the flow field by the presence of

the end-plates can be localized to the vicinity of those plates.

Since both the primary fluid motion and the ilaposed

magnetic induction field are localized to the (r , _ ) plane,

the induced electromotive force and also the primary current

flow will be directed normal to the end-plates. Thus the neg-

lect of the influence of the non-conducting end-plates on the

zeroth order electromagnetic field and current distributions

would be highly misleading.

Therefore, the three-dlmensional zeroth order slectro-

magnetic field and current distributions will be determined with

full account taken of the presence of the non-conducting end-

plates. The only approximations involved here will be those

connected with the use of the potential velocity distribution.

Further approximations are required, however, for the

determination of the first order field and current distributions

due to the time-dependent, asymmetric character of the differential



equations involved. Solutions to these equations are obtained

omitting completely not only the viscous effects but also the

end-plate effects on the electromagnetic field distributions.

From the above discussion it becomesapparent that the

hydrodynamic boundary layer effects are completely omitted both

in the zeroth and the first order solutions. Such an approxi-

mation is justified for large hydrodynamic Reynolds' numbers or

for large scale generators because the influence of the boundary

layer on the various field quantities is essentially a surface

effect, and as the relative thickness of the boundary layer

decreases (as by increasing the size of the generator or de-

creasing the viscosity of the working fluid or by both applied

simultaneously), its influence on the total energy output

becomesless significant.

It should be mentioned here, however, that the boundary

layer losses in AC - MHDgenerators are more pronounced than in

comparative DC-devices.

In DC-generators the emf within the boundary layer still

has the samesign as that in the potential flow, but it is

reduced in magnitude. Therefore, the boundary layer in DC-

generators forms simply a leakage path between the electrodes

to shunt the load.

In AC-generators, on the other hand, power is generated

in that part of the flow region only, where the velocity of the

conducting mediumexceeds the propagation velocity of the magnetic
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field (this is the case of "negative slip", where the slip

velocity is defined in electrical machinery as the difference

between the propagation velocity of tile magnetic field and

the velocity of the conductor). In flow regions where the fluid

lags the propagating rla_netic field, power is consumed to

speed up the fluid to the synchronous velocity and instead of

power generation, pumping action takes place. Since within the

boundary layers the velocity is reduced to zero at stationary

walls, at least a part of the boundary layer will always act

not only as a leakage path for eddy currents, but also as a

power consuming region. As has been indicated, these losses

are not considered herein.

Since the power supplied to the field coils for main-

taining the applied magnetic field is much larger than the

power transmitted to the load (as has been shown: the ratda of

the maximum power o_tput to the power input is proportional to

the magnitude of the magnetic Reynolds number), the distortion

of the applied magnetic field by the characteristics of the

load circuit will be completely neglected.

Finally, in the process of the following analysis, the

working fluid will be assumed to be incompressible. This implies

some limitations on the magnitude of the injection velocity.
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PART A. FIELD DISTRIBUTION

MATHEMATICAL FOI_KTLATION OF THE PROBLEM

I. Basic Equations

The laminar motion of an incompressible electrically conduct-

in_ fluid in the presence of a magnetic field can be described in

terms of the following equations:

Mass conservation:

-.> *

v. v -- o (l.l.1)

Momentum conservation:

o-v> v2 ->p_ -- - _ +Y>x_+_+_ v (1.I.2)

Maxwell's relations:

vx_= _>÷_t > (1.i.3)

v.Z- o (i.i.4)

x _ = - ___F (i.i.5)
_t

(I.I.6)

The generalized Ohm's Law, after neglecting the Hail currents,

can be written as

*For the notation, see the List of Symbols.
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I = ÷ v × (1.i.7)

Since the divergence of the current density must vanish,

XT. I - 0 (1.i.8)

The energy equation will be introduced and discussed

in a later section.

2. MHD Approximation

One frequently encounters magnetohydrodynamic problems

dealing with fluids and plasmas of low electrical conductivity

and negligible net charge accumulation in the bulk of the fluid.

In such cases the applied electric and magnetic fields cause

merely a relative motion of the charged particles in an almost

neutralized state. Thus the possibility of charge accumulation

is usually excluded except in the vicinity of non-conducting

boundaries, and the bulk of the fluid can be considered as an

electrically neutral medium. The electrical charge density

e is assumed to be zero in most of the flow region.

The magnetic permeability of the fluid can be approxi-

mated usually by using the permeability of a vacuum space.

Furthermore, the displacement and magnetization cur-

rents can also be neglected usually.
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With the above approximation the haxwell equations can

be rewritten as

_TX B =//_o I (1.2.1)

with V'B - 0 _ (1.2.2)

× E - Bt (1.2.3)

with _7. E - 0 or _7"I - 0 (l.2.h)

where I - _( E + V x B ) (1.2.5)

Equations (1.2.1) and (1.2.2) define the magnetic field; the

electric field can be determined subsequently using equations

(1.2.3) and (1.2.h). The E term in (1.2.5) contains really

two parts: an induced electric field given by (1.2.3) and

measured in a coordinate system where the magnetic induction

field has a non-vanishing time derivative, and a static electric

field determined by the boundary conditions. The static field

can be described usually in terms of a potential function.

Careful consideration should be given to the use and

limitations of equation (1.2.1). Although in small magnetic

Reynolds number applications equation (1.2.1) is often neg-

lected and the current distribution is determined by using
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equation (1.2.5) exclusively, it should be clearly understood

that equation _zx_ = /_o I has a very well defined

meaning even if the induced magnetic field is much smaller than

the applied induction field.

The role of equation (1.2.1) in small magnetic

Reynolds number a_plication can be seen from the following

argument.

If the interaction of an applied magnetic field, B° ,

with a conducting fluid is considered, then the term

//_o-lV X Bo gives the current distribution jr° which

induces the "outside" (= applied) magnetic field. Hence

JVXBo

relates the applied ma_netic field _¢ith the current distribution

maintaining the field B .
0

Assuming now boundary conditions such that E -_ 0

in the flow region, the current distribution in the moving

fluid is given by

I = _( V X B ) , where

B = B° + bi ;

bi being the magnetic induction field generated by the induced

currents. Equation (1.2.1) yields now:
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+ b ) = /@o J total ' wherex( _o i

j - j + Itotal o

But _x Bo = /54o To

hence Ux bi = _'o I .

If the magnetic Reynolds number is sufficiently low,

then b i << Bo and Ohra's Law can be rewritten as I _ ff(V x Bo),

but the equation ?x bi -- /'_o I

valid, since the condition b i <<

triction on the derivatives of bi .

remains unchanged and

Bo does not imply any res-

From the above considerations follows that the equation

_xbi =/_o I

the space where J o

by _xB = _o

can always be used. For that part of

= 0 the above equation can be replaced

I .

3. Boundary Conditions

The assumed hydrodynamic boundary conditions are as

follows :

The fluid of given azimuthal velocity VI and pressure PI

is injected tangentially into the vortex chamber at the outer cylin-

der with an approxi_mte axisymzetrical velocity distribution.

(This condition can be obtained, for example, by injecting the
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fluid through a rotating porous cylinder. ) The fluid leaves

the chamber through radial ports on the inner cylinder (a

stationary porous inner cylinder would correspond to the

idealized example given above). The radial velocity at the

outer cylinder is defined by the continuity condition. Since

the end-plate effects are neglected, no boundary conditions

will be ascribed in the z-direction. Using cylindrical polar

coordinates the above considerations imply that

- VI at r- _ (1.3.1)

- 0 at r- (1.3.2)

$_ = Q_Ao at r = RO (1.3.3)

where Qo is the total volume flow and A is the area of the
O

exit ports at r - R . In addition, it is assumed that
O

In general, the following boundary conditions can be

applied to the electromagnetic fields:

The tangential component of the electric field is con-

tinuous at an interface (such as the wall of the generator

chamber); Et2 - Etl (1.3.5)
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The change of the normal componentof the electrical

field at an interface is equal to the surface cha_ge density:

-E1n " " (1.3.6)E2n

The normal component of the magnetic field intensity

is continuous at the interface: Hn2 - Hnl = O (1.3.7)

The change of the tangential component of the magnstic

field intensity at the interface is equal to the surface current

density distributed there:

nx( - ) -- _ (1.3._)

Furthermore, considering a conducting medium bounded by finite

nonconducting boundaries, the normal component of the current

must vanish at the nonconducting envelope. Thus the total

electric field must have a vanishing normal component at the

boundaries.

4. Nondimensionalization of the Equations

The characteristic or reference values for the physical

quantities described by the basic equations will be chosen as

follows:

The actual width of the flow duct _ - R0 • _R

shall be used as reference length.
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Since the performance characteristics of a conventional

induction generator are strongly influenced by the magnitude

of the so-called sllp velocity (defined in electrical engineerin_

as the excess velocity of the propagating ma!_netic field over

the velocity of the conductor), we shall choose for a reference

velocity a quantity numerically equal to the negative sli_

velocity at the outer radius:

vl - " nv

( g<;/2_ is the frequency of the applied induction field.)

The reference quantity for the magnetic field will be

the applied induction field strength B° ; the electric field

will be nondimensionalized by the product ( _V B° ).

The following dimensionless quantities can be introduced

now:

. xi x i
l t

o

"_* _ V

"V - VI _ 642RI - _ ;

t* tdV _*- --_ ; - ;

p = • ;

" (mV)S_ ;

-P* B
B n n

B
o

I

(1.4.1)
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With the aid of the nondimensional quantities presented

here, the basic equations can be written in the following form:

_7"- V* _ 0 (1.4.5)

with _*" _* " 0 or _ " _* = 0 (1.4.7)

The dimensionless flow and field parameters appearing

in the above equations are defined as

Re • (1.4.9)

is the product of the hydrodynamic Reynolds number and a quantity

closely related to the slip_
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. _/_o(_R)(_v) (1.4.1o)

is the magnetic Reynolds number;

_(Z_R)Bo2

N " W

is the magnetic interaction parameter and it can be written as

. s _ (1.4.n)

where

s - ...... eo2 _. (z._.12)

._( _ v) 2

is the magnetic pressure coefficient.

Equations (1.4.4) to (1.4.8) can be combined to give

an alternate expression for the magnetic field:

L _t*
(l.h.z3)

For the sake of simplicity, we shall omit the asterisk from the

dimensionless quantities throughout the following sections.

5. Series Expansion in Terms of Magnetic Reynolds Numbers

Since to obtain an exact solution for the basic set of

equations (given by (1.4.2) to (1.4.8) would be most difficult

for the given three-dimensional configuration, the application
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of an approximate method, such as series expansion in a charac-

teristic field parameter, becomes unavoidable.

As it has been previously indicated, in MHD flows the

magnitude of the magnetic Reynolds number indicates the interac-

tion-intensity of the hydrodynamic and electromajnebic field

distributions and usually R_ _ 1 in MTD generator applica-

tions. The natural choice is, therefore, the series ex_ansion

of the various field variables in ±_ositive powers of the ma!_netic

Re>_nolds number (Ref. _- 15_7):

-_ _. -. Rz2_2V " V° + R_ VI +

P " Po + Rm Pl + Rm2p2 + "'"

B - B° + Rm B1 + RmB 2 + ... (1.5.1)

-_ _. -, Rm2_2g - E° + Rm E1 + + ...

-. __ --_ Rm2_2I - I° + Rm I1 + + ...

These quantities can be substituted now in the basic

set of equations and equating then the terms containing like

powers of Rm, ordered sets of equations are obtained. Solution

for each set of equations is obtained by utilizing the previous

lower order solutions, as will be seen later.
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The colnplete solutions for the various field distribu-

tions are obtained in the form of infinite series which are ex-

pected to converge for s_all values of _ . 'lhe rate of con-

vergence, however, is controlled by the magnitude of the

magnetic pressure coefficient S , as can be seen froz the

momentumequation (1._.3), where N m S_ .

For small magnetic Reynolds numbers, distinction should

be madebetween the following cases: a) the magnetic pressure

coefficient S is muchlarger than unity (strong magnetic

fields coupled with moderate velocities); b) the magnetic

pressure coefficient is of unit order or less.

For large values of S (case "a"), the product SR_

in the momentumequation might be of unit order or larger

(N _ O(1) ) even if the magnetic Reynolds number itself is s_all

cmmparedto unity; thus the omission of the electromagnetic term

from the zeroth order equation could not be justified. In such

cases, performing the series expansion in Rm the magnetic

interaction parameter N should be retained in the momentum

equation and treated as an independent parameter. As a result

of such procedure, the zeroth order momentum equation will

already contain an electromagnetic _erm.

If the magnetic pressure coefficient is of unit order

(case "b"), then the order of the magnetic interaction parameter

is defined by the magnitude of the magnetic Reynolds number:

N _0 (_m) , and the electromagnetic term in the momentum
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equation becomessmall comparedto the other terms. If a series

expansion in Rm is madeand S is reta_ed now as independent

parameter, the zeroth order hydrodynamic equations will be

completely uncoupled from the electromagnetic field equations.

This is in full accord with the physical nature of the phenomenon

discussed here: for N _O(Rm) _< 1 the electromagnetic

term in the momentumequation is small enough, so that its in-

fluence on the velocity distribution can be completely neglected

in the first (- zeroth order) approximation.

The magnetic pressure coefficient, S , will be assumed

to be of unit order throughout the present analysis so that full

advantage of the mathematical simplification offered by the per-

turbation technique can be taken. The analysis will be restricted

to the determination of the zeroth and first order field distri-

butions, i.e., the first two terms in the series expansion.

It should be mentioned here, however, that the sameprocedure

could be applied to cases with moderately large values of S ,

but a greater numberof terms of the series expansion would have

to be calculated for satisfactory accuracy of the solution.

Substituting now (1.5.1) into the basic set of equations

(1._.2) to (1.h.8), and equating the terms containing like

powers of Rm the following ordered sets of equations are

obtained:

Zeroth order:

vo - o
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"-_V° + ( V _7) V _ Po + Re--_72 V (1.5.3)
_t o o o

___ _B
X E = o (1.5.4)

o --_t

- o (1.5.5)
with _7" Eo = 0 or _7. I°

where I = E + V X B (1.5.6)
O O O O

The zeroth order magnetic induction field is completely

determined by the applied magnetic field and it need not be

considered here.

As can be seen, the hydrodynamic equations are completely

uncoupled from the rest of the zeroth order set.

First order:

_z. Vl . o (z.5.7)

"_ V1 -9 --_

_--_ + (VO "_7)V 1 + (Vz ._7)V° = -_TPl + Re" 2 +

+ S EoX Bo + (Vo)C Bo))< Bo (L5.8)

_XB1 "_o ÷ × _o (l.5.9)

BI = 0
(l.5.lO)
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-_ "D B1

_TX_I " -_t (1.5.11)

with _7- E1 = O or _7. I1 = 0 (1.5.12)

where I1 = E1 + Vo X B1 + VIx B° (i.5.i3)

The second order equations are as follows:

_. v2 -o (i.5.]A)

"D'T"+ (voT + ( .V) + (v2"V)vo "-VP2 +

+ ÷ S B1 + _ X Bo + ( X ),K B1 +

+ (VoX BI) X B° ÷ (Vi × So) X B° (1.5.i5)

_7 XB 2 " w.I + Vo)< BI + VI X Bo (1.5.16)

with

where

-MP

_7. B2 . 0 (i.5.i7)

_. "_ B2

_Tx E2 . -ot

_7. E2 - 0 or _. 12 - 0

12 - E2 + VoX BE + VI X BI + V2XB °

(i.5.i8)

(i.5.i9)

(i.5.2o)

Using the same method higher order sets can also be obtained.
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6. The Choice of Coordinate System

There are two possibilities in choosing the coordinate

system, neither of them offers any particular advantages rela-

tive to the other.

Oneof the possibilities is a space-fixed coordinate

system. Since the boundaries of the generator device discussed

here are axisymmetrlc, the obvious choice is the cylindrical-

polar coordinate system fixed with respect to the inner (sta-

tionary) cylinder. The z-axis is directed along the axis of the

concentric cylinders and the end-plates are given by the coordi-

nates z -0 and z -L . The applied magnetic field is

described in this system as

A

B° = r cos(_t -_) + _ sin(_t - _) (1.6.1)

where Cc_/2_ is the frequency of the "rotating" magnetic

field. The field equations (with the exception of the zeroth

order hydrodynamic equations) are time-dependent in this system

as well as functions of the azimuthal coordinate " _ ".

The second choice of the coordinate system is suggested

by the nature of the electromagnetic induction phenomenon. As

was pointed out previously, the various field quantities depend

on the magnitude of the "slip" velocity rather than on the

absolute magnitude of the velocities. Since the magnetic field

appears to "rotate" with a uniform velocity, one can fix the
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coordinate system to this rotating field thus eliminating the

time dependencefrom the basic equations. Unfortunately the

azimuthal dependencestill remains as can be seen fro_ the

transformation formulas given below. If the quantities mea-

sured in the rotating system are denoted by primes, then the

following correlations hold (Fig. 3):

r t = r

Zl m Z

I

Vr = Vr

I

V@ = V_

Vz' = Vz

cot

C_2y _

Figure 3

(1.6.2)

and the time independent magnetic field in the rotating system

is described as

B ' = r ' cos - (1.6.3)

The curl of the electric field vanishes in the rotating

coordinate system (see Equation l.h.b), thus the basic equations

can be written in a somewhat simpler fon_.

When the inverse transformation is made, however, from

the rotating to a space fixed coordinate system, an additional

electric field must be calculated due to the relative motion

of the two coordinate system (Ref. /-16_7,_/-17_7).Hence,
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neither of the coordinate systems offers particular advantages

relative to the other in mathematical sense.

In different parts of the analysis, however, one coor-

dinate system may be more convenient than the other and each

will be used accordingly.
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II. THE Z_OTH ORDER FIELD DISTRIBUTIONS

The solution of the zeroth order set of equations will

be obtained in a space-fixed coordinate system.

I.) The Hydrodynamic Field

The zeroth order hydrodynamic equations corresponding to

the conditions outlined in the introduction can be written in

expanded form as

r Vro) +_------_ 0

_r

(2.i.1)

2

V_ o"-_ Vro V/__o_ ____o +"_Vr° + v _ vr° * =
f-_t ro_r r _-_ r _r

(_rrO I _Vro+Re-i +_r

Vro 1 92Vro 2 "DV_O

r r r

(2.1.2)

"_v ¢o "3V¢o
+V

_t ro _r

VroV_ o i _Po+ V_o _V_o ÷
r _ r r _

÷

÷

r _r T r

(2 .,, .3)
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with the boundary conditions

V_o = VI [

Po = PI

V/o = 0 l

Vro _ Vo

at r = A"_ =- I (2.l.h)

R
o

at r = A-R =" _o

(2 .i .5)

(2.1.6)

(2.1.7)

where VI' Vo' Pl are dimensionless quantities; Vo m A_(Qo/Ao);

Qo being the total volume flow and A° the total area of the

exit ports.

Since the electromagnetic field does not affect the zeroth

order velocity distribution and the boundary conditions imposed

on the hydrodynamic field are steady, axlsymmetric, the quantities

described by (2.1.1) to (2.1.3) will depend neither on time nor

the azimuthal coordinate.

Under such conditions Eq. (2.1.1) can be solved at once:

const. IA q _%

V - _z._.oj
ro r

of applying the boundary condition (2.1.7)

Vro = _Q , where Q -= --_o Vo (2.1.9)
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Equation (2.1.3) can be written now:

d2VMo + i dV_o

dr2 r dr (I - QRe) V_°r2 (l* QRe) = O

(2.1.1o)

The general solution of (2.1.10) is represented by:

D- ar + br -1

where D z 1 + QRe

(2.1.u)

The constants a and b can be determined by applying (2.1.4)

and (2.1.6),

arid + b fi "I = VI

D fo-Ia_o + b

1 (2.l._)

Hence

a - I Vl fo/D VI

(2.1.13)

where

R o

(2.1 ._)

Thus the visaous solution for the zeroth order azimuthal velocity

can be written as
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V_o = (l-_D÷I) - _ (2.1.15)

The expression for V_ o has the familiar structure characteriz-

ing the cylindrical Couette-flows: the polynomial contains two

terms, one being directly-, and the other inversely proportional

to some power of r •

The zeroth order pressure distribution is determined by (2.1.2).

2 2
_Vro V_ o Q2

dPo V_o Vr° + --
dr r _r r r3

Hence

. Q_÷ _I__._,2f r_o'l _ S_ _r_ (1 - L_I D 2 _ I) _°rD'2

(2.i.16)

VI2 i 2D
r

-Po " const. - + ' ẑ 2D

2r (I _D+I) 2D_I

-_ (_I)D rD'l " _°2_2D2r2 3
(2.1.17)

The complete solution can be obtained by applying the condition

(2.1.5):
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VI2 2 " [ _I2D- r2D
(1 - _D+,) 2D_I2D

2_o I_)D(_ID-I_D-l)D-I r
+ - I =

Q2 VI2 [ 1 (I rl2D) +1)- _ -PI 2 _i2 rI (l

_2(0÷1) j2 ( I i) (i - rlD-I+ 2 - D - I ) (2.1.18)

rI

where rI is defined as

rI _ r/fI ,, _ , __..r (2.1.19)_/n R RT

As will be seen later, the presence of the (rD) term in the

expression for the viscous velocity distribution (D is a constant

proportional to the hydrodynamic Reynolds number) introduces

substantial difficulties in the procedure of determination of the

corresponding electromagnetic fields, especially in case of large

Reynolds numbers.

Therefore, the inviscld solution will be used and this

can be obtained from (2.1.1) to (2.1.3) by considering the

limiting case when Re -_- _ . The above equations can be

rewritten now as
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with

dV_o VroV _ o
V,,o d'-"F"+ r .,. o

V¢o = VI at r = fl

(2.1.20)

(The no-slip boundary condition is dropped.)

with

2 dVro
dP° V_° V -----
d-r- = r ro dr

Po = Pl at r = _I

(2.1.21)

The solution of the zeroth order radial velocity remains

unaltered.

Equations (2.1.20) and (2.1.21) are satisfied by the following

solution:

VI VI

V_o-- 7- -
(2.1.22)

1 (v_.2 -- - 1)Po " PI + Q2)( i

rI

(2.1.23)

Equations (2.1.22) and (2.1.23) are the well-known potential

vortex solutions.
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2.) The Electric Field

The dimensionless equations (1.5.h), (1.5.5) describing

the zeroth order electric field can be written in exoandedforu

as follows :

r

Ero "_Ezo

"-_z "-_r
= - COcos(_'t -/)

(2.2.l)

1 _ (rEdo) 1 _Ero = 0

_r (rEro) + r _-O_ + _zZ° = 0 (2.2.2)

We shall assume that the equation (2.2.2) is satisfied in the

entire flow region except in a thin layer at the boundaries

where a charge accumulation is assumed to take place. As a

consequence of this hypothetical charge distribution, the normal

component of the current vanishes at the non-conducting boundaries.

The electrostatic field generated by this charge distribution

is irrotational hence it can be described by a potential function.

Accordingly, it can be assumed that

_0 = _'01 • n02_ (2.2.3)
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where EOI is g_verned by (2.2.1), E02 is the electrostatic

field and is described as

The boundary conditions on _o are defined by the restrictions

imposed on the current distribution (1._.6) at the nonconducting

boundaries:

+ Bo)_ o (2.2.5)ir° m Ero1 _ r (V° x =

at r - _o and r = _i

Izo _ Ezo1 - _z ÷ (V° x Bo)z = O
(2.2.6)

at z _ O and z _ L

Thus the boundary conditions on _o in explicit form:

_r O = Ero I at r _ _o ; r = _I (2.2._a)

-_z - EzO 1 + VroB_o - V_oBro (2.2.6a)

at z=O ; z=L

for the given configuration, _o cannot be a discon-Furthermore,

tinuous function of the azimuthal coordinate _ .
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In the followinE:, solutions will be obtained for the

electric fields Eo1 and 1402 .

The set of equations describing EOI (2.2.1) is satisfied

by a solution of the following form:

Ero I = E_O 1 ._ 0 ; Ezo I = COr cos(_t - _)

(2.2.7)

The two vanishing field components are explained by the

well known physical principle that the induced electromotive

force is perpendicular to the plane in which the magnetic flux

lines "cut" the conductor.

Next, the field E02 given by the potential function

will be determined.

boundary conditions on _ are rewritten now asThe
" u

_- - 0 at r _o _ r = ]CI (2.2.8)

- (COr - V_o ) cos(cot - ,_) + Vro sin(cot - _)

(2.2.9)

The boundary conditions (2.2.8), (2.2.9) together with the basic

equation _2_o= O, define _o as an anal_tic function in

the region fo _ r _ P I ' 0 _ z _ L whose normal

derivatives are specified on the surfaces bounding the region.
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The bo_nndary value problem thus defined is an example of the

Neumann problem and its sol_tion is straightforward if the

corr_spozding modified Green's function (= Neu_ann function)

is found for the given configuration.

The difficulties connected with the construction of the

14eumann function for a finite cylinder su_est the use of some

other method for the solution of the given problem. The

application of some integral transforr_ation appears to be most

convenient, as will be seen later.

Since the bound%ry conditions contain both sin(_t - _ )

and cos(cot- _) terms, it is asst_aed that

% = _O1 cos(C_t-y) + _02 sin(oJt - _) (2.2.10)

where 1 and _02 must satisfy the equations

r _r r2 + _2 i =
O

- 0 9 ?>at r= 0 ; r = I (2.2 .n)

= (cOt - V_o ) at z = O ; z--L
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= 0
_r

= V
_z Fo

1 _2 _-
÷ _-=---_.w_2 : 0

r 2

at z : 0 ; z = L

(2.2.12)

T

Since the normal derivatives of the functions %ZPoI and _02

are given at the endpoints of the z-interval, a finite Fourier

cosine transform will be apolled _zith respect to the z-coordinate.

The transformation coordinates are defined as

rI - r = mr

zI i -_ z = mz

¢2
m =- T (2.2.13)

..2"

The finite Fourier cosine transforms of _01 and

be defined now as

o2°[ o21-

_02 will

cos(nzl)dZ I (2.2.1_)

_ /_02(rl,_l)'C°s(nzl)dZl (2.2.15)

0
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Then the f_mctions _01 and _02 are given as

_01 = CIO + /_'_ Cln'C°s(nz I)

n =0

(2.2.16)

_o_- °_o ÷ •__ o_nCO_z_)
n =0

(2.2.17)

Note that

-_ rl
0

rl2

_= 1)2

(2.2.18)

mn _ rl2

(2.2._9)

Furthe _nore,

in
_A _°i cos (nZl)dZl

)_ z12
O

I_TI " _ _zl I n2Cin[_i]

Zl=_ Zl=O

(2.2.20)
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In the present case

zI

Zl=II

_z I

zl=O

for i = 1,2 .

Thus the equations (2.2.]I) and (2.2.]2) can be transformed

into

d2C 

drl_ + rl r_ 1 - (n2 + ¢ )Cln

with
_Cln

_ rl = 0 at rI = m_o ; rl = m _i (2.2.21)

d2C2n 1 dC2n (/_)
÷ r-ll r-_-l- (n2 + -_)C2n=rl [1-(-1)n_,/_-2,

with
C2n

_-----rl 0 at rI = m ; rI = m I (2.2.22)

The summation index appears as parameter; therefore, three

separate cases will be considered now.
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a) For n = 0 (I- (-1)n) -_ 0

-i
Clo - aor I + bor I

-I
C20 = Cor I + dor I

(2.2.23)

with
a° - b° ¢0 -2 = 0

ao - bo._ i-2
= 0

co - do,_o -2 = 0

co - d6 _i "2 = 0

(2.2.24)

Hence Clo = C20 a 0
(2.2.25)

b) For n = 2, 4, 6,... 2k

k = I, 2, 3, 4,...

1 - (-I)n = 0 and the differential equations

(2.1.22) and (2.1.23) can be written as

(2.2.26)

d2Cln + 1 dCln

drl _ rl _l (n2 + r_ )Cln = 0

d2C2n + 1 dC2n

dr Z rl r_ 1 (n2 + r_1 )C2n = 0

(2.2.27)
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dCln dC2n

_-I drl
- 0 at r = m fo ; r = m f!

(2.2.27)
Cont'd)

The differential equations with the corresponding boundary

conditions given by (2.2.27) are examples of the general

st_-Liouvilleproble_(seeRef.#13_7_ Elt7_.

The differential equation for Cln and C2n tozether

with the corresponding boundary conditions are all homogeneous ,

thus unique soft, ions to these equations cannot be obtained

without specifying additional, nonhomozeno[_ boundar}, condi-

tions. Furthermore, since the bounda_ conditions specified

for the electrostatic field and represented after the finite

Fourier transforms by the _[S-s of equations (2.2.21) and (2.2.22)

are not included an7 more in the equations (2.2.27), all even

values of the ind@x n will be omitted from f_rther

considerations.

c.) For n = s m 2k + I = 1,3,5,7,...

k = 0,1,2,3,... (2.2.28)

equations (2.2.22) and (2.2.23) can be rewritten as follows:
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I = 2 2 _0 o
+ --_ )Cls ' 7 rl m

rI m

with dCls
- 0 at rl = m _o ; rl = m fl (2.2.29)

d2C2s i dC2s
, . (s2

drl 2 rI dr

__i) =
rl2

The comolementary functions corresponding to the homo-

geneous _qS-s of equations (2.2.29) and (2.2.30) are:

(Cls) c = Asl I (srI) + Bs KI (srI) (2.2.31)

(C2s) c = Csl I (srI) + D s KI (sr I) (2.2.32)

The particular integrals corresponding to the BHS-s of

the above equations can be computed for each case as

(Cis)p = Rl(t)R2(r ) - Rl(r)_(t) t fi(t)dt (2.2.33)

r o

where

i=l, 2

C = rW(_l,E2,r ) =
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W being the Wronskian of _I and R2

-- II(Sr )

R2 _ Kl(Sr)

fi _ RHS of equations (2.2.29) or (2.2.30), respectively.

Hence the particular integral of eqn. (2.2.29) contains

such terms as

r r

_t V_°(t) Ii(st)dt and rlt V_°(t)Kl(St)dto (2.2.34)

O

Consequently if the viscous velocity distribution is to be used

_t D÷
integrals such as r tD+l _(st)dt and _l(St)dt would

r r_
o o

have to be evaluated, where D is defined by (2.1.11) as

D=I+QR
e"

The recurrence formula for cylindrical function (Zn(r))

in general is given as

r r

/tN Zn(t)dt " - (N2-n2) /tN'lZn(t)dt

r o
o

÷

I_+_n+l(r) - (N-n)rnZn(r) I

r

, where N

r o

is an arbitrary number. One may assume that similar expression

could be derived also for the modified Bessel-functions..

Obviously the number of terms required for the evaluation of the



- 51 -

above integral (see the recurrence formula) approaches the numeri-

cal value of the hydrod_mamic _eynoldS number in the given case.

Shus for flows with high Reynolds numbers the integration process

clearly becomes impractical.

Because of these difficulties the "inviscid" velocity

dlstributionwill be used in the determination of the electro-

magnetic fields. Such an approximation must yield satisfactory

gross results as far as the overall power generation is concerned

if the hydrodynamic Reynolds number characterizing the system

is sufficiently high and the flow region with pronounced surface

effects (such as the boundary layer) is comparatively small (as

in case of large scale generators).

Taking advantage of the inviscid velocity distribution

given by (2.1.9), (2.1.22) the particular integrals of eqns.

(2.2.29) and (2.2.30) can be written as

(CIs)p = - 22 _ I _ rl - rl /
(2.2.35)

(C2s)p - ;2 rI

Hence the complete solutions for

written as

CIs = Asll(Srl) + BsKl(Srl) - ;2" rI /

C2s = Csll(Sr I) + DsKl(Srl ) - 22'_2_'_ri

Cls and C2s can be

(2.2.37)

(2.2.38)
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The integration constants As, Bs, Cs and Ds are defined

for each value of s by the following sets of equations:

I1(sm_o)1
ASlSlo(smgo)- m_o _ - BSl SKo(Sm_o)

.2_s2m2 _ o_÷

(2.2.39)

A
8

Il(sm%) I

Slo(Sm_l) - m_l "_J" Bs [SKo(Smfl)

C
S

-a-_

(2.2.ho)

_" Il(Sm_) ] Kl(Sm_ )

[SIo(sm_I) .... m_ J- Ds[SKo(Sm_I ) + m_i ] "

=+ s-_m22 /2_

Hence the potential function for the irrotational par_

of the zeroth order electric field can be written in the fol-

lowing form:
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$o = Z sll(Smr) + BsKl(smr) -
S

S m

_sll(Smr ) DsKI ( 2+ + smr) ---,_-
sm

sin - $ c

C2.2. )

where s = I, 3, 5, 7, .... " 2k + I : k = O, I, 2, .... and the

constants As, Bs, Cs, and Ds are given by equations (2.2.39) and

(2.2.40).

Thus the zeroth order electric field can be computed on the

basis of (2.2.3):

,%

_> - kre cos (et - ¢) - V_o (2.2.42)
o

One F_y notice at this point that the solution obtained for _o in

for_ of an infinite series does not converge to t_e value of the

function _o at the endpoints of the interval (at z = 0 and z = _).

The exact solution requires

f(r, ¢) at z = O; z = L

(see equ. 2.2.6a). The solution obtained by a finite Fourier cosine

transform cannot satisfy this condition because sin 0 = sin s, = 0

for any integer value of "s". This results from the application of a

Fourier cosine transform to a piecewise continuums f_nction. (A similar sit-

uation
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occurs, for example, when one tries to expand the unit stepfunction

into a Fourier sine series. The series will converge to the func-

tion every_There except at 51'% end-_:oints of the interval. )

Yi]xpnnding the first term o_ the R}_ of (o.2.1;2) into an infin-

ite Fourier si_.e series:

cos (_t- _) o t___ _l(r,_cos(_t- ¢)) sln (_)
S S

(_.2.43)

s = I, 3, 5, 7, .... 9M + 1 ; k = O, I, 2, ....

The components of the zeroth order electric field can be writt_.n ,qs

follo_-;s:

{[A ll(' r)E - Z (Sin) cos (smz) s(-lo(smr) + ) +
ro s s_IT

+ B + ) + s--_m (e +-) cos (o_t- $) +
sGo (s_r) s_r

r

Ii(smr)

+FCs(-Io(smr) + "-------)star+ Ds(Ko(srnr) +

Kl(S_, r)

smr

2

. Csll(smr )
S

ll(Smr) Kl(Smr)

+B 2- AS r s r
sm

DsK l(smr)

r
S r_

r

(2.2 .Lh .,%.
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ZO s

2
+--F

S m

2 (PIVI _Csil(smr) DsKl(smr )_---_)_cos (o_t-*) + + -

2_r_J- -_- sin (_t- _)} (2.2.44)
S m
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III. THE FIRST ORDER FIELD DISTRIBUTIONS

The first order or perturbation fields are defined by equa-

tions (1.5.7) to (1.5.13).

The mathematical analysis connected with the solution of

these equations becomes quite involved due to the three-dimensional

zeroth order electromagnetic fields and current distribution defin-

ing some of the first order quantities.

Since an exact solution to the system of equations described

above does not appear to be available, approximate methods of solu-

tion will be used.

In order to obtain a significant reduction in the cc_plexity

of the 9roblem, the end plate effects will be co_01etely neglected

in the first order solution. As was shown by I. Bernstein _12_

such an approximation is well Justified if the duct configuration

is such that currents are deflected from their principal direction

(the z-direction here) after a considerable flow length only. This

condition is satisfied in the given case if the height of the gen-

erator chamber is large compared to the width of the annulus.

For sufficiently large (L/_) ratios the eddy currents (the

r and _ current components in the given case) become negligible

compared to the current flow in the z-direction. Consequently

the complete neglect of end plate effects leads to a one-dimensional

current distribution thus reducing the difficulties connected with
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the mathematical treatment of the problem.

I.) The First Order Velocity Field

The differential equations describing the first order velocity

and pressure distributions can be written in the following form:

(r +I____ . o_r vrl) (3.1.I)

8Vrl _Vrl + 8Vrl _Vro V_l _Vro
-_ + Vro -_- vCo _ + Vrl -_- + r

jr = - _ + S - E B(_° + B B(_° +zo B_O" Vro V_o ro

32Vrl 1 3Vrl Vrl i 82Vrl 2
Re'l _---_r +r _r r2- +-_r _2 -2r

(3.1.2)

_t ro 8r r Vrl 3r r _ V_l

_l 2 v B +
+ Vrl V_o) = - _--_ + S(Ezo Bro - V_o Bro - ro ro B_o)

+ Re'l 2 r 3r -_ +÷_ _ -_--_
8r r r _2 r

(3.1.3)

The momentum equation in the z-d_rection is completely omitted

in view of the assumoticn described above.
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Since the zeroth order solution satisfies the exact bound-

ary conditions, the boundary conditions ascribed to the perturba-

tion field quantities must be homogeneous:

Vrl _ 0 at

V_l = 0 at

and for the pressure distribution

r = Po ' (3.1.4)

r = Po ' r --Pl ' (3.1.5)

Pl = o at r - Pl " (3.1.6)

The electromagnetic terms, appearing on the RES-s of equ.-s

(3.1.2) and (3.1.3) are periodic functions of the nondimensional

time t and the _coordinate. Therefore one cannot assume a priori

an axisymmetric, time-independent flow pattern as was done in the

zeroth order solution.

The presence of time and _ derivatives in equations "3.1.I)

to (3.1.3) makes the attempt to obtain an exact solution for the

hydrodynamic field distributions difficult. Thus the search far

an approximate solution appears to be Justified in the given case.

One way to obtain an approximate solution for the above equa-

tions is to solve them for the time average of the hydrodynamic

quantities (velocity, pressure) taken over the period of the mag-

netic field-rotation. This procedure, however, eliminates the

periodic dependence of the physical quantities on the S-coordin-

ate. Since useful power is produced only by those current comport-
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ents which are in phase with the voltage (a ohase shift between
--> -->

the two field vectors I and E leads to the _roduction of reac-

tive power) the phase relations among the various hydrodynamic

and electromagnetic field quantities have an important role in

the energy considerations. Therefore the elimination of the

periodic dependence by computing the time average of the various

quantities would be impractical and misleading.

Another possible approach is to neglect the viscosity ef-

fects and to transform the governing equations into a coordinate

system fixed relative to and rotating with the magnetic field.

In this way the physical quantities measured in the rotating coor-

dinate system will not be time dependent. The azimuthal dependence,

however, will not be eliminated by this transformation.

Accepting the second approach for obtainin_ an approximate

solution for the first order velocity-distribution the following

transformation coordinates are introduced:

r ! = r ; v ! = v
r r

@' = _- _ot ; v@' = v_- _r

The primed system is rotatin_ with a constant angular velocity _.

The direction of the x'-axis coincides with the direction of

the imposed zeroth order magnetic field and rotates together with

it.

The zeroth order nondimensional field quantities transposed
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into the rotating coordinate system can be expressed as follows:

v , : Q__
ro r w ; B t = c os tro

v$' PIVI ' = -sin _'= r--W- - _r' ; B_o

E ' = E , = E , --0
ro _o zo

' = I@ ' - 0Iro o

Izo' = Vro' B_o' - V_o' Bro' = -Q, sin $' -

(3.1.8)

As one may notice, the zeroth-order electric field vanishes

completely. This follows from the fact hhat the zeroth-order mag-

netic field i8 time-independent now and the absence of end-plates

eliminates the build-up of an electrostatic field. (See the dis-

cussion following equ. (2.2.2)).

Substituting (3.1.8) into the basic equations and neglecting

the viscous terms the following system of differential equations is

obtained:

(r'_r--X Vrl') + -- o (3.1.9)
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Q _vl Plv__Vrl (_ _IV_v
3r (°_- 7J --_ rT-_ vrl' + 2 - ' =

_r'- * - _ cos - r-"r

(3.1.1o)

"--'rE - (_ - r,----_ -- , + -r' 3r' 35' r ,2 )Vrl r-7(_' v_I

PlVI 8PI' + S_(ar' -_, Vrl' * -_-- Vrl'_ - _

_zv_> 2¢,_ Q ¢,cos¢,
- -_T-JCOS r--V sin J (3.1.11)

Next, the pressure term will be eliminated from the two equations

above by cross differentiation.

For sake of simplicity the primes _II be omitted from the

different variables during the follo_ng, but it should be under-

stood that all quantities are expressed in the rotating coordinate

system.

Performing the differentiation and subtracting (3.1.10) from

(3.1.11):

Q( _r2 +I 8V_l _ I 3 Vrl I rlr 8r r r _rS_ +-_--_-r +

8Vrl 32Vrl

r 3r85 - - _ 8"_

+_IvI 7 +- --_-7 v +r r 7 =
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= s(2_ _os2 ¢ - = oo2¢ . _ _in2_+

+ PlVI cos 2 _ + Q sin 2 ¢) (3.1.12)
r r

Performing the possible algebraic simplification and introducing

a stream function _ such that

r_a = _ (3.1.13)Vrl = ; V4)l - _r

equation (3.1.12) can be rewritten as

I 3__2 +__123._ I I I _2
Q[- _-_3 T ar r 8r - r_(- 7_ "r _r--_ -

"
I I _2 _2

-_ -7 :

-- - +- --_'_-7 ÷-_ ) -
r r or r r _ra_

= S[_r sin 2' + _I;I .¢ cos 2' + 2a_r cos 2 $]

(3.1.14)
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%,lith the consideration of the following identities

3 (72 _ q_r_ 1 3_/ + I __'-_ *) =, _-_ +-r _r --_ =
r

_r ÷"; ar_ r _r - _ _ r _r_2
(3.l.15)

r

equation (3.1.14) can be rewritten as

-- -_ s_ 2¢- PIvI cos2¢- _r
r r

Introducing the notation

F - V2_ PlVI - M ; o_

PIVI

(3.1.17)

The above ec_ation can be rewritten in the following form:

_F 3F sin 2_
+ M(r -1 - 6r) 3--_ = r

2v,__ 6MrM 008

r

(3.1.18)

The structure of equation (3.1.18) suggests to seek a solution for

F of the following form:
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F = Fl(r) sin 2¢ + F2(r) cos 2¢ + F3(r) (3.1.19)

Hence the first order stream function, defined by equation

(3.1.17) can be written as

$ = S[_l(r ) sin 2¢ + _2(r) cos 2¢ + ,3(r)] (3.1.20)

where $I' $2' and $3 satisfy the following set of equations :

+I
*I" _ *I' - -'2 *I = F1

r

1 __4 *2$2" +'_ $2' =
r

F2 (3.1.21)

$3" * 1 = F3r $3'

The velocity components are given then in the rotating coordin-

ate system as

Vrl = r_ = 2S [_ cos 2_-*2r sin 2_]

v¢1.-_ - -s['1'sin2¢÷$2'cos2¢÷,3,]

(3.1.22)

The new velocity components can now be expressed in a space-fixed

coordinate system as

_rl

v_

2S sin 2(_t - ¢) +-- cos 2(=t - $)]
r

(3.1.23)

S[$I' sin 2(=t - _) - '2' cos 2(=t - ¢)]- $3' + o_;
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The boundary conditions (equations 3.1.4 and 3.1.5) imply

*I

_2

_2

'1

i2

'3

*3

= 0

: 0

= 0

=oj

= 0

OJ

: "_Po
oJ

: _PT

at r = Po'

at r - PI

at r = Po

at r = Pl

(3.1.24)

Returning to equation (3.1.19) now, the functions F1, F2 and F3

must satisfy the following conditions:

FI' - 2M(r -I - 8r) F2 = - _r (3.1.25)

F2' + 2N(r-I - 8r) FI = - _r (3.1.26)

F3' : - 8Mr (3.1.27)

where the primes indicate differentiation with respect to r. Equation

(3.1.27) can be integrated at once:

Introducing the notation

F3 6M r2= - V + A_ (3.1.28)

g(r) • 2M(r -1 - 8r) (3.1.29)



-66-

with

equations (3.1.25) and (3.1.26) yield the following relations:

F2 - _1(Fl'÷I_)

, d FII +d 1

F'

and _ _ ( )+ gFl - -_

(3.1.30)

(3.1.31)

Equation (3.1.31) is a linear second order differential equation de-

fining the function F1 up to two integration constants and it can be

written in an expanded form as

(r-1 - 8r) FI" + (r"2 + 8) FI' + (r-1 - 6r) 3 F1

M (r-1 8r)2 1 (r-2 + 8) + _ (r-1 8r)-r - -;
r

The function FI, defined by equation (3.1.32), can be found by ap-

plying the series solution method known as the method of Frobenius

to equation (3.1.32). (In fact, a complete solution for the first

order velocity distribution has been found by applying the series

expansion method. For brevity, however, the details of the anal-

ysis will not be given here).

Another way of obtaining a solution for F1 is to apply the

method of successive approximations (Picard's method) to equation

(3.1.31). (See references [20], [21] ).
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Thus defining F1 as

_ (r) (3.1.33)Fl(r) . lim fn
n->oo

the sequence of function fn(r) is given by (see equation (3.1.31)):

f !

d _ M d 1 (3.1.34)( ) = r _ (Tg)- g fn-1

With the choice of fo = O, the indicated integrations are performed,

and the first two functions of the sequence fn are fcund to be

fl = M2_nr (_r2 -Lnr) + (Cll - 1)_nr

- _2 (CII + M2)r2 + C12 (3._.35)

f2 N2&r( r2 - - N22÷CZ2( 2tnr-

- + + M2)(r 2 _ _ _r4 +_nr)2 - { 2r4) _2 M2(CI1

z 2 6 M2(Cn _+ _ 8 r ) - - 1)( (_nr) 3 8r 2 dnr) 2 +

+ _I 82r[I lnr - -_ 82r4) + Mh(51 Cnr)h -52 8r2 (_nr)3 +

! 2r4 (_nr)2 _ 1 63r6Ln r -I_ r42 _ _ + 5 3r6 ) __nr +

+ C21 dnr - "_ r2) + C22 ; (3.1.36)

CII , C12 and C21 , C22 are the integration cor stants corresponding to

the first and second aporoxi_ations , respectively.
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The integration constants for the n-th approximation are found

by determining the corresponding stream functions 'ln' '2n and apply-

ing the boundary conditions (3.1.24).

The stream function corresponding to the second approximation

can be written as

where

•, s[h sin2¢+ _'2cos2¢., ,3] ,

= Alr2 Blr-2 2 1 _nr - r 2]
+ + C21 -_ [(_nr) 2 - _ _ +

2 2

r _Jnr- r 7nr (_nr- 1+ c22 V --g- ._) +

1 (M 2 )r2Esr2_nr - (_nr) 3 + _ _nr) 2 - _ Znr]+ _ + C12

r 2 r 4 M2_ .L72(_- ÷ _cl2÷_ el2 ) +_ (On " N2) '

t_ _ 2 N2r (I - 32 + _ r4) - 3"2 (Cll - I) r 2 {_nr) 4 -

- (_nr) 3 + _ (/nr) 2 - _nr}-_ r 4 ((_nr) 2 -

h2n r + 13 2
3 1-8 }+ 2i-r6Ar 982 r63 +

M2 _ _ +
+ 32 [_ r2 {_ (/nr)5 (inr)4 + (J/_nr)3 +_ _'nr)2

+ _nr} - 1669 rh { (_r)3 - 2(_/:nr)2 +-_j_nr - V}I0

+ _- r 6 /_nr (,_,nr - ) - r (:.nr + r + _ r

(3.1.37)
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_2

2 2

A2r2 _2_-2 _ L_r Tr EG'nr)2= + + C21 - C12 -

I +M2) _

M 3 r2

4 62r4

- 8r + _ 8r 2)_
(3.1.38)

B3 r 2 8M r 4 (3.1.39)
*3 = A3_nr + _-- - 32

The integration constants of the second aporoximation AI, A2, A3, BI,

B2, B3, C21 and C22 are found by solving the eight simultaneous alge-

braic equations (3.1.24), as was pointed out previously.
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2. ) The First Order Magnetic Field

The set of equations describing the perturbation magnetic

field is :

 Bzl
= E

3_ Oz ro Or
(3.2.1)

OBrl 0Bzl _(_o

8z 3r = E_)O = r85
(3.2.2)

I 3Brl

r _ = Ezo + VoB@ - V¢oBro
(3.2.3)

OBzl-_- (rBrl) + _ + _ = 0r Or r Oz
(3.2.4)

The inviscid velocity distribution will be used throughout

equations (3.2.1) to (3.2.4).

In order to obtain a solution for the perturbation magnetic

field equations the three field components will be separated now.

Differentiating equation (3.2.4) with respect to z and ex-

_-B_I _2

pressing _ and _ (rBrl) through equations (3.2.1) and

(3.2.2) respectively, the partial differential equation defining

Bzl can be written as

02B___ + I _Bzl I 32Bzl ...----02Bzl= V2Bzl
r _r +77 + 3z2
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Next, the equation defining the magnetic field componentB_I

will be derived. Differentiating eqBation (3.2.4) with respect to
32 8_Bzl

and eliminating _ (rBrl) and_-_-_- through equations (3.2.3)

and (3.2.1) respectively, the following equation is obtained for

B_l:

_2 1._r(rB_ l) + 1 82 32
_r2(rB_l ) + r -_r V (rB_I) + --_(rB_l)sz

= V2(rB¢l)

_E
I ___ r2 ro
8r (Ezo÷ VroB_o-V¢o%o)- r-_-_ (3.2.6)

Finally, an equation for Brl is derived by differentiating

(3.2.4) with respect to r and making the proper substitutions:

82Brl 3 8Brl B _2Brl 32Brl

r 8r + __l I +
+ + -_ 8_2 8z28r r r

2 _Bzl 5E$o I
r _Sz + _)z - r _ (Ezo + VroB_o -

(3.2.7)

V_oBro) ;

Separating the variables, the solution for the equation

(3.3.5) can be written as

Bzl l,n

• [An cos nz + Bn sin nzJ . (3.2.8)

. [ Cn Ik(nr) + Dn Kx(nr) _
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An inspection of the zeroth order quantities which define the

perturbation magnetic field (see equations (3.2.1) to (3.2.3) to-

gether with equations (2.2.4))suggests the admissible values for k

and n as

k = i ; n = ms ; s = I, 3, 5, ...; B • 0(3.2.8a)n

Hence

Bzl = _Z cos(star){[als ll(smr)+ bls Kl(Smr)] COS (_t-*'
"" S

+ [Cls Ii(smr)+ dls Kl(Smr) 3 sin (et-_)} (3.2.9)

where the constants als , bls , Cls , _s' are left undefined.

Next, a solution will be found for equation (3.2.6) which can

be rewritten in an expanded form as:

ve(r_¢l ) -- 2(Ezo +Vro B¢o- V_oB_o)÷

+r ÷VolVoV oSro)"

= 2_ Z (sin)sin (star){[A Ii(smr) + B _(smr) +
s s s

_ sin (_t-
(3.2.1o)
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_-sume now a solution of the form

Be1 = r l(r,z,s) cos (_t- _) + f2(r,z,s) sin (a)t- #)

(3.2.11)

Equation (3.2.10) yields two independent correlation for fl and f2:

_2q i _I q _q
m 4- m

r _r r _z2_r2 +
2 _ Z (,sin)sin (star){AsIl(smr)

s

+ BoK 1 (star)4- +_(a)r + @I_)}
S m

(3.2.12)

)2f2 I &f2 f2 )2f2

+ r _r -_ +--
8r r _z 2

= 2 _Z (sin) sin (star) {Csll(Smr )
s

l Q}+ DsK I (smr) - _ r
s m

(3.2.13)

The structure of (3.2.12) and (3.2.13) suggests the application of

finite Fourier sine transforms to these equations. Indeed, intro-

ducing the transformation coordinates rI = mr ; zI = mz ; m = _/L

and defining the following transform functions:

s. o
o

S2n If2] = __ f2 Sin (nzI) dz I

0

. (3.2._)
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The functions fl and f2 are given by the inverse transforms:

OO
n=l

GOf2 = Z
n=l

Sin sin (nzl)

Sln sin (nzI)

(3.2.15)

One may note here that

sin (nzl) sin (SZl) dz1

o

0 if n#s
f

_/2 if n = s

and L_

O

g(r) sin (nzI) dzI n( In)

n = i, 2, 3, ....

(3.2.16)

Then for n = 2, 4, 6, .... 2k k = I, 2, 3, 4, ....

d2_ 1 dlSln (n2 + __) SIn = n_(fl)

_II + rI drl rI b

((-1)n-i)• o

d2S2n dS2n

drI' +_i r_l - (n2 r-_l) S2n n_(f2)
+ b

since (-l)n-I z 0 for even values of n. (fl) and (f2)b inb

(3.2.17) denote the values of fl and f2 on the boundaries zI = O;



-75-

zI = _ and they will be left undefined at the present.

The solutions to the homogeneous differential equations cor-

responding to (3.2.17) are given by

Sl(2k) k=l_ [a2k II (2kmr) + b2k K1 (2kmr)]

(3.2.18)

oo

$2(2k ) = _ [C2k I 1 (2kmr) + d2k K1 (2kmr)]
k=l

Since the zeroth order field quantities entering in the defi-

nition of the perturbation magnetic field do not contain terms with

even values of the index n, the solutions Sl(2k ) and $2(2k ) will be

neglected again all together.

For odd values of n n m s = l, 3, 5, 7, .... and

_(-l)S-l] =-2 equations (3.2.12) and (3.2.13) are transformed into
L J

÷

drl 2 rl drl rI b

2 s
[As I1 (s_) + B K1 (star)+-_I_ (# r1m s s rI J

(3.2.19)

d2S2s + 1 dS2s 2 = -2s _(f2 )
drl_ rl _ll- (S + r_ ) S2s b
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+2£
m

(3.2.20)

The general solutions for the above equations can be presented in

the following form

SIs = a2s II (smr) + b2s _ (smr) + gl(s, m, r) +

S2s = C2s II (smr) + d2s KI (smr) + g2(s, m, r) +

+lm [Cs <rllo(smr)- 2II(SNr))- Ds rl Ko

(3.2.22)

In the equations (3.2.21) and (3.2.22) the constants a2s , b2s , C2s ,

and d2s are left undetermined Just as are the functions gl and g2

defining the particular integrals corresponding to the unkno%n func-

tions (fl) and (f2) ' respectively.
b b

Hence the general solution for B_l is found to be

Il(smr) _(smr)

= i {[ +2 Z sin (smz) a2s r b2s r
B_I _ s

+

gl _io (smr) 2 ll(;mr !)+-- + A - B K (star) -
r s m s O
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+ d2s

--U-_ + cos (_t- 0) + C2s r
s m r

Kl(smr) g2 f_

+-- + C \ ""_io(Smr)r r s m - DsKo(smr) +

s = l, 3, 5, 7, .... (2k + l) (3.2.23)

Finally, the general solution of (3.2.7) defining the third pertur-

bation field component Brl will be found.

Equation (3.2.7) can be rewritten in expanded form:

_2Brl 3 3Brl _ I B2Brl 32Brl

8r_ + r Br + r +7 T + %z2

{[ II(smr) Kl(smr)2 Z (sm)sin(smz) als r + bls r
s m 7 oos( t-¢)

+ [Cls ll(smr)r + dis Kl(smr)r

(3.2.2h)

Assume now a solution for Brl of the following form:

Brl = Brll(r,z,s) cos (_t - 0) + Brl2(r,z,s) sin (et - _)

(3.3.25)

Substituting this back into (3.2.24) two independent equations are
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obtained for BrlI and Brl 2"

_2Brll 3 8Brll

5r_ + r %r

2
8 Brll

+
5z

2_Z (sin)sin (smz)[als ll(smr)r
s

+ bls

Kl(smr)
r

s m

(3.2.26)

_2Br12 3 SBrl2
+

_r g r _r

82Brl 2

÷_ =
_z

EC ll(smr)2 Z (sm) sin (smz) is r'" + dis
S

Kl(smr) 1 _, PIVI_I

r
s m r

(3.2.27)

Defining now the finite Fourier sine transforms of BrlI and

Brl 2 as

0

W

o

(3.2.28)

where z1 = mz ; m = w/h ; rI = mr .

The inverse transforms yield:

Brll ° _n_l S3n sin (n_)
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OOBrl 2 = nZ__lShn sin (nz I) (3.2.24)

The differential equations (3.2.26), (3.2.27) can be transformed

into

d2S3n + 3 dS3n n2

drl 2 rl dr I S3n

= 0

(3.?.3o)

d2S4n 3 ciS[un 2
+

drl_ rl dr I n Shn

= 0

for n = 2, h, 6, 8, .... 2k

k = I, 2, 3, h

and

d2S3s 3 dS3s
+

drl_ rl dr I

s2S3s = -2s (Brn)b + s +

Ii(smr) Kl(Smm)

+2s(als i rl I + bls r I )

(3.2.31)

d2Shs + 3__ _ - s2Sh s

drl _ rl drI m rI

+

zl(s r) Kl( mr)

+2s (Cls rI + _s rI )

for n = s = i, 3, 5, .... (2k + I) (3.2.32)
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where (Brll) and (Brl 2) are the values of Brl I and Brl 2 on the
b b

boundaries zI = 0 and zI = N. Both these functions will be !eft

undefined at the present.

On the basis of an argument similar to that oresented in con-

nection with Sl(2k ) and $2(2k ) all solutions S3n and Shn for even

numbers n: n = 2, h, 6, 8, .... (2k) will be neglected again.

The differential equations (3.2.31) and (3.2.32) are satis-

fied by the general solutions:

Il(smr) KI(smr)

S3s = a3s rI + b3s rI + g3 (s' rl) -

2 _IQ2 + smr)- blsKo(smr)(3.2.33)- 7 alsI°(

Ii(smr) Kl(Smr)

Shs = C3s rl + d3s rl + g_j (s, rl) +

PI_) + Clsio(Smr) _ dlsKo(smr) (3.2.34)

rI

where the constants of integrations a3s , b3s , C3s, d3s will be left

undetermined Just as are the fUnctions g3 and g4' representing the

particular integrals corresponding to (Brl l) and (Brl 2) in
b b

(3.2.31) and (3.2.32).

Thus the complete general solution for Brl can be written as
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Brl {_a3 II(smr) b3s Kl(Smr)-- Z sin (smz) .--s + + g3s r m r

- s-_m22 _r_ + alsIo (star) - blsKo(smr)_os (_t - _) +

_s Il(Smr) d3s Kl(Smr)+ +
r m r

+ Cls Io(smr ) - _sKo(smr)] sin (_t- _)} (3.2.35)

s =i, 3, 5, 7, 9, .... (2k +l)

The next step is to find those values of tDe integration con-

stants als, a2s , a3s, bls, b2s, b3s, Cls, C2s, C3s, _s' d2s' d3s'

for which the basic correlations (3.2.1) to (3.2.4) will be satis-

fied. The undefined particular integrals gl' g2' g3 and g4 will

be determined in the same manner.

Substituting B_I and Bzl given by (3.2.23) and (3.2.9) into

(3.2.1) the following correlations are obtained:

m

als - sm C2s = (I - 2s) Cls

bls - sm d2s = Ds

Cls + sm a2s = - (I - 2s) As

dls + sm b2s = - Bs

gl m 0 --_

Jg2 m 0

(3.2.36)

(3.2.36a)
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Equation (3.2.2) with Brl and Bzl given by (3.2.35) and (3.2.9)

yields a second set of correlations:

als + Sa3s = Cls

bls + Sb3s = Ds

Cls + SC3s = -As

dis + Sd3s = -Bs

g3 m 0

gh -= 0
}

(3.2.37)

(3.2.37a)

The correlations obtained by substituting Brl and B_I into (3.2.3)

are as follows:

ma2s - C3s = 9_As

mb2s - d3s = 0

mC2s + a3s = 2Cs

md2s - b3s = 0

(3.2.38)

The divergence equation (3.2.h) does not yield new information, iZ

merely reproduces some of the correlations given above.

Thus twelve equations (3.2.36, 3.2.37, 3.2'38) with twelve
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unknowns are obtained. Four of these correlations, however, are

not independent (equations 3.2.38 for examD!e can be obtained by

combinin_ equations 3.2.36 and 3.2.37). Hence the specification

of an additional condition becomes necessary which must be based

upen the physical nature of the field configuration discussed

here and _hich yields four additional correlations similar to

those presented above.

There are various possibilities for specifying the addi-

tional condition needed but not all of them are of practical value

if the consistency of the solution is to be preserved.

The choice of an additional condition is governed by the as-

sumotion used in the solution of the perturbation velocity field

equations, that is by the neglect of the end plate effects. In-

deed, if the influence of end plates is disregarded hhe perturba-

tion field component Bzl vanishes.

But Bzl = 0 (3.2.39)

means als = bls = Cls = %s " 0 (3.2.40)

and the system of equations (3.2.36) to (3.2.38) yields the values

of the remaining integration constants at once:



2S-i
a2s sm As

-I
= -- B

b2s sm s

2s-I CC
2s sm s

-I D
d2s = --sm s

a3s = E

I D
b3s =

> (3.2.1_I)

C3s : "T

-l B
d3s "7

The complete solutions for the first order perturbation maynetic

field components can be written now as follows :

= sin(smz) . . + s
Brl r sm r

As ll(smr ) B Kl(Smr)

E s--Y_2 oos(_t-¢)+ - s-_ r - s-_

2 __(e PlVII+__ -7, J sin (_t-_)}
s3m 2

(3.2.h2)

Ii(smr) KI (smr)

= _Z sin (smz){[As(Io(smz) - star )- Bs(Ko(smr) + star )
S

2

--U-_
S m

(_ + ) cos(_ + _) + Cs(Zo(s_r) - s_r- -) - Ds(Ko(_)
r

Kl(smr) _Q

Bzl =

where s = I, 3, 5, .... (2k + I)_

o ; (3.2.hh)
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the constants As, Bs, Cs and Ds are _iven by equations (?.2.1LI) and

(?.2.1_2).

3) The First Order Electric Field

Since the knovm quantities enterinf_ in the definition of the

first order electric field (such as the _erturbation ma<'netic fiel@

components) were computed by neglecting the end plate effects, the

same assumption will be used in the determination of the perturba-

tion electric field.

As a result of this approximation no electrostatic field

apnears in the first order solution. Indeed, the electrostatic

field denoted in the zeroth order solution as 02 was the result

of charge accumulation build up at the end plates in such a manner

that the normal current component vanished at the nonconducting

boundaries.

In the first order n_roxiration the currents nre unrestric-

ted in the z-direction hence the charge accumulation with the cor-

responding electrost_ntic field are omitted from consideration. The

complete first order electric field is defined by the equations:

I _Ezl . 3Brl

r 8_- _z = 3t (3.3.1)

_rl _zi _i (3.3.2)
_z _r _t

I _ i _Zrl _zl (3.3.3)
r _-_ (rE_l ) r _ = _t
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ir_Br (rErl) + Ir _ + ?_EzlSz - 0 (3.3.h)

The assumption of vanishing divergence (equ. 3.3.4) is based

now on the fact that with the removal of the end plates there is

no charge accumulation in the entire flow region.

Following the method applied in the solution of the first

order magnetic field, three senar_te second order partial differ-

ential equations can be derived for the three perturbation electric

field components and the general solutions to these equations can

be obtained by applying a finite Fourier sine transform to the equa-

tion defining Ezl , and finite Fourier cosine transforms to the equn-

tions defining the field components Erl and E@I. A number of cor-

relations is obtained then amon_ the various integration constants

by substituting the general solutions in the set of equations

(3.3.1) to (3.3.4). If one specifies now an additional condition

(the neglect of end plate effects in the given case), all integra-

tion constants can be determined uniquely.

The procedure outlined here has been in fact carried out but

it will not be presented here for brevity.

Instead, a solution for the perturbation electric field will

be obtained by neglecting the end plate effects a oriori, and the

simplified set of differential equations corresponding to this

field configuration will be solved. (The two procedures outlined

above are consistent as is evidenced by the fact that the solutions
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were found to be identical.)

Indeed, the radial and azimuthal components of the electric

field vanish in the absence of the end plates and the various field

components cease to be functions of the z coordinate.

Thus

Erl = E_I = 3_z m 0 (3.3.5)

and the equations (3.3.1) to (3.3.h) can be rewritten as

3Ezl 3}_rl
- r

/
_r _t

(3.3.6)

In this approximation one should not attempt to satisfy the

divergence equation (3.3.h) for the following reason. The neglect

of end plate effects implies that the physical quantities do not

vary in the z-direction. However, as the result of the finite

Fourier transforms applied during the previous derivations with re-

spect to the z-coordinate, all first order field quantities are

expressed in infinite sine or cosine series containing z as argu-

ment. Thus the condition _Ezl - 0 cannot be satisfied (A simi-
Bz

lar situation exists when one expresses the unit step function

through a Fourier series of ar£ument x. Althouvh the function it-

self is constant, its derivative with respect to x will not vanish

though it may numerically approach zero if a sufficiently large
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number of terms of the Fourier series is taken. )

Equations (3.3.6) can be rewritten in exDanded for_ as:

zl / {Z Bs s
- _ --Z sin (smz) II (smr) +- K I (smr) -

2 /_(er PIVI)] cos32 r
S m

(_t - _) + r_m Ii (star)+

Ds K1 (star)- s_m2_-2_ Q3 sin (et _)} (3.3.7a)sm

zl

_r
iI(smr )Z sin (smz)[[Cs]F (Io(smr) )

s star

- D
S

(Ko(S_r) ) + 2 2 Q (_t ¢)+
smr s3-_m oos -

ll(Smr)
+_-As(Io(smr) smr ) + Bs(Ko(smr) + Kl(smr)s_r ) +

2 _(¢o + f_)] sin (_t- @)}
S m r

(3.3.7b)

The solution for Ezl defined by equations (3.3.7a) and

(3.3.7b) can be written up at once:
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Ezl = e Z sin (smz) I1 (star) +
s

+__SsmKI (star)- s--_m2 cos (et- ¢) +

A _ 2_

(3.3.8)

Equation (3.3.8) together with Erl - E_I m O defines the per-

turbation electric field.



-90-

PART B. ENERGY CO_SIDERATIONS

IV. THE POWER GENERATION

I. Tb.eEnergy Equation

The complete energy equation for an electrically conducting

fluid moving in the presence of a magnetic field can be written as

(see references _3] and _4]).

2
D

p _-_ (CpT + 2) -- _ . (KvT)+_>. (Y>x_ ÷

12

where C is the specific heat of the medium at constant pressure,
P

T is the temperature,

K is the thermal conductivity of the medium, and

is defined as the hydrodynamic dissipation function;

+ _2 -

2

k = l, 2, 3 ; _ = l, 2, 3 (4.I.2)

(In expression 4.1.2 the summation convention is used).

Equation (4.1.1) introduces another field variable: the tem-

perature. If one succeeds to compute the temperature change charac-

terizing the generator-cycle, the change of energy content per unit

mass of the fluid can be determined subsequently. This in turn

yields the necessary information about the power extracted from the

fluid in form of electrical energy.



Although equation (2.1.1) is linear in T its solution is quite

difficult for the given case, due to the complicated expressions

found for the electromagnetic field components.

The nature of the process discussed here, however, makes it

possible to determine the power density generated in the fluid with-

out computing the temperature field distribution explicitly.

Indeed, the high electrical resistivity of the fluid makes the

ohmic losses dominant over the losses due to viscous effects and

thermal conduction. The generator chamber is assumedto have per-

fect thermal insulation hence there are no heat losses to the en-

vironment. Furthermore, the power extracted from the fluid in mag-

netohydrodynamic generators is usually of the sameorder of magni-

tude as the heat gained by the mediumthrough the ohmic heating be-

cause of its low electrical conductivity. Hence t_ere will be no

large temperature gradients induced by the generator cycle.

Under these conditions the energy balance of the working

fluid can be described by forming the scalar product of the velocity

with the momentumequation:

--v. (Y>x + v
p

or neglecting the viscous term:

(I) (II) (III)
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where

(I) is the rate of cl_ange of the kinetic energy of the fluid

(positive if the velocity increases)

(II) is the rate of work done by the pressure forces on the fluid

(positive in case of adverse pressure gradient)

(III) is the rate of work done by the electromagnetic forces on

the fluid (positive for electromagnetic driving i.e. pump-

ing action ).

For steady, incompressible flow equation (_.1.3) can be re-

written as

• _+Tp =

DG2= D-i v + p (_.l._)

In case of generator action the power is extracted from the

fluid, thus v . ('_x _ is a negative quantity. Hence the power

P -- - _. (_>x
V

_T

Dt (2.1.5)

where the subscript v indicates quantities per unit volume and PT

is the total pressure defined as

1 2

PT = _ pv + p

As could have been anticipated, the generated power density
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is proportional to the total pressure drop.

The power density given by (h.l.5) is not all useful power as

can be seen from the following argument:

-->
v . (_x _ --_. (_x _ --

_-y>. (5>÷

= __>.T_÷z__2 (h.l.6)

The useful or effective power generated is given by the (-_

term (the minus sign indicates that tbe energy is being extracted

from the fluid), and (12/a) is the ohmic dissipation.

The basic performance characteristics of the converter system

can be defined now as

m

P
effective power extracted --_ (h.1 7)

p
rate of work done by the fluid

where

P = _ (-][>. _:_ dv
e t

V

f[ -]P : -_. (I x B) dv (h.l.8)

V

The integrals are taken over the volume of the generator

chamber.

The total ohmic losses are given by the integral
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i2L = _ dv (4.1.8a)

v

The electrical efficiency defined by equation (4.1.7) is

closely related to the magnitude of the "slip" s, defined in elec-

trical engineering as

where

Vph - v
c (4.1.9)S =

Vph

v is the conductor velocity and
c

is the phase velocity (velocity of propagation of the mag-Vph
ne tic field).

For the case of slug motion of a conducting fluid between two

infinite parallel plates in a transverse magnetic field propagating

in the direction of fluid motion the following relation has been ob-

tained by I. Bernstein (see ref. F121):
U J

1 (l .l.ga)
= l-s

Hence under idealized conditions (uniform motion, zero slip,

absence of eddy currents) the electrical efficiency may approach to

unit value.

In the following, dimensionless quantities will be used again

and all variables entering in the definition of the various power

densities will be expanded in terms of the magnetic Reynolds number.
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Hence

p

v +R PvI+ ....Pvo m

= -.+R(v> _ + ..... .... x
o m m

x o m

or since

"i"> : _> + v-> X T_> and
o o o o

the following expressions can be obtained:

(r° to)= - V , XPro o

= -- V

o
. x _ ÷ (vo x _ ) x (h.l.lz)

Pvl = - -> " o x _>)o + Vo . x +

+ V 0 •

= - V I . X 0

-" V
0 • 0

(4.1.12)
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The ohmic losses are represented by the term _>. _. Applying

the series expansion technique (ohmic losses m Lv):

Lv -- Lvo + Rm Lvl + .... =

[_ _ # #-> _o> ]( ÷_>x ) +R ( +_>x + ) ÷...o m o v1 x .

(_.l.13)

Equating the terms containing like powers of R :

L = [> . _> =

vo o o

<_o+7ox_o_<_o÷7o__o><4__

Lvl = 2Y>"T'_lo =

__o_,v_x_o_. _ +7 x_._v,xro_0 0

(h.i.i5)

Finally the effective power is defined as P = -_>. _. Ex-
ev

panding the terms in infinite series
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p = P +RP + .... =ev evo m evl

O O

: -I_o+_ ....)-E(_o+_ox_o)÷

_(_ ->x_+_x _)+....+ + VO O

(h.l.16)

Thus the following correlations are obtained:

Pevo o " o o " o

P
evl : -I_o. T_÷_. _o) :

-- - . ( +v_x ÷VlX ) +

In order to compute the electrical efficiency of the generator

cycle (_) the above expressions must be integrated over the total

volume of the generator chamber.

2. Zeroth Order Power

Expanding equ. (h.l.lO) and making the proper substitutions

the following expression is obtained for the zeroth order power den-

sity:
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P =- (V_o B - v B ) I =VO ro ro _o zo

- (PiVi cos (_t- _) - Q sin (rot - _))-_ Z
8

ll(smr)

Z (sin) sin (smz) {A s , r
S

Kl(S_)
+ B - r ]COS (et-$)+_C s _(smr)

s I

+ Os r j

+

{P II K1= - Z (sin) sin (smz) IVI (As- + B ) cos 2 (mr - $) -
s r s r

- Q (Cs _- + D ) sin 2 (et - _) +
S r

II
II + KI) Q (As ++l [PIVI (Cs _- DS r- " "r-

+ Bs -_)3 sin 2 (rot-_)} (_.2.1)

where the following symbols are introduced:

II • II (star)

and as earlier

KI -= KI (star)

s ,, I, 3, 5, 7, .... (2k + I)
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by

Since

The total power generated in the generator chamber is given

L| J2_iP = _ C P r dr d_ dz
0 _ VO

o o Po

(4.2.2)

L

f
o

2_

I
o

(Sm)sin (s_z) dz : - cos (s Z z)/' =
o

2_

2 _ sin 2 (_t- _) d_
cos (c0t - ¢)d$ = j

o

2_

f
o

sin 2 (_t- ¢) d@ --- 0

Pl Pl

j_ (q + _1 dr : 1-- I_ - K Ism 0 o

Po Po

where I • I (star)
o 0

K m K (smr)
o o

The integral (4.2.2) yields the following expression for the

zeroth order total power:

Po = --m- Z s (PIVIAs
S

(Io(smPI) - Io(SmPo)) + (PiViBs - Q Ds)(

(Ko(S_Oo) - K° (smPi)) _ (4.2.3)
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Next, the total ohmic losses shall be computed.

equation (4.I.13 )

and

L
VO

L

It° 2 2 + I 2= + I_o zo

L 2_ ilI _ r dr d_ dz= Lvo

o o Po

As _iven by

(4.2.4)

(h._.5)

One may note that

I = E
ro ro

= E + VroB$o - V$oBroIzo zo

Furthermore;

2
I
ro

s(r) _ 2 (_t _) +
2 I_(=)_os(_z)F1 oos -
W S

Z (sm) cos (smz) F2s(r)_ sin2 (_t- _) +2_s

4 [ (sin)cos (smz) Fls(r)_ cos (_t-$) •+ -- Z

S

(r)_ sin (_t- _) ;
• _ (sm) cos (smz) F2S

S (4.2.6)
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2

2
I
ZO

F s ( ]_ 2
= _ [_ COS I

S

(¢)]2 _i2 (o_t- ¢)+
2 I (s_z)+ -_ Z cos F2s

S

b (s_z) (¢) cos (s_z) F2s
+ _ _Z cos FIs (4.2.7)

S

_2 2 (_t- _) +
= 2 _.r. (sin) sin (smz) FIS (z) cos

If 8

(_)]2s_n2(_t- ¢) +
2 [ (Sin) sin (smz) F2S+ -- Z

S

+ Z (sin) sin (smz) FIs (z)] cos (_t- ¢) "

where

(4,2,8)

(_)] sin (_t- ¢)
• IZ (s_) sin (smz) F2s

S

plvl

(r) , As(-I° + ) +B (Ko + ) +_ " r
F1 s smr s smr s m 2 Q

(r) - c (-Io +4 ) ÷D (Ko ÷_I _ 2 r
F2B - s sm s _'_) _ _ "_

(_.2.9)

h K1 2 2 Q(_) , c +D ---_- _ -_

Fls s r s r s m rh h
(_)) ,,-A -B +"_2"- _ r

F2s s r s r s m

(z) + BsK I
FIs m AsI 1

(Z) _ Csll + DsK I
F2s

(4._.ii)
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First of all, one notes that

2_

sin(_t- _)_os(_t- _)d_
O

- 0

hence the non-quadratic terms drop out from equations (4.2.6) to

(4.2.8) after integrating with respect to $.

Furthermore, expanding the quadratures as, for example:

z (sin)cos (smz) Fls_ --
s

2 _FII 2 2 32 2 2 52 2-- m cos zI + FI3 cos 3zI + FI5 cos 5zI + ...

÷ 2.3Fn F13cosh cos3h ÷ 2.5Fn FI5cosh cos5z_÷._

where zI --- mz ; m = -- .
L

Since

0 for s # n

_ cos SZl cos nzl d_ =

o _ for s = n

L
2

_E (sin)cos (smz)Fis _ dz
s

o

s2 2
= _mF Fis ; i =

S

I, 2, (4.4.12)

Therefore
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_ _I (Iro2 + I_o2 + Izo 2) r dr d$ dz =

o o Po

m s

Po

(r) 2 2 2 F_2s¢2 (¢)2+m s + Fls +

(_)2 m2s2 (z)2 m2s2 (z)2+ F2s + ;ls + ;2s 3 r dr (4.2.13)

Substituting (4.2.9) to (4.2.11) into (4.2.13) and performing the

algebraic simplification available, the zeroth order ohmic losses

can be computed as follows:

Lo = m Zr +C 2 (1 2 + _. +
S O

S

P_
2II _ -

+ _- 2sm r J + (Bs2 + Ds2)[s%2 (Ko2 + K12) +
r

+ 2 K_122 + 2sm_] + 2(AsB s + CsDs)IS2m2_ (IlK 1 -
r

+

ioKo)+ s___r
_] 16 (2 +(IIK° - IoKI) + 2 +_

r s mff

pI2VI 2 + Q2
4_ __2 (Aslo BsKo ) 14/_' ) " T - +_ (QCs"

r

i 11PIV_As) (-_ s_2_)_ _4s (QD - _iV#s)(_
r r r

+--- dr =
sm

r
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CO

z Is={(As2+c2)loll(B2÷D2= _ S S S
S

) KoK I -

22 (AsBs + CssD ) IIK ° - (AslI + BsK I)

pl2Vl 2 Q28 2 +

- (cszl + DsKl)2 +-V_- (_ 2 ) -
stow r

i

- T r (AsIz + BsK I) +-- (QCs
S m S m

II _ KIIi 1PIV_s ) _- + + (QDs - PIVIBs ) T (4.2.14)

S m o

with s : I, 3, 5, 7, 9, .... (2k + I).

The coefficients A , Bs, C and D are defined in See. (II.2).S S S

3. The First Order Power

The expression for the first order power production density

can be written in expanded form as

-->

Pvl : - Vo
x + x - v_ x_ >)

O O

= _ (Ezo + VroB_o- V_oBro)(V_oBrl- VroB_l + v_iBro- VrlB#o)

- (Ezl + VrlB_o - v_iBro + VroB_l - V_oBrl)(V_oBro - VroB_o)

(4.3.1)
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The ohmic losses oer unit volume are given by the followbng

expression :

Lvl = 2 T>o " T1 =

: 5-roo

- v_iB + v -ro roB_l

Finally, the net power density generated can be _mitten as

Pevl = - _> _i _ T>O O

= - Ezo (Ezl + VrlB@o - v@iBro +

+ VreB¢l - v@iBrl)-

Ezl(Szo+ _B¢o - V_o_ro) (_.3.3)

The above expressions will be re,mitten now in a somewhat different

form :

Pvl = Pvll + Pvl2

whe re

Pvll = (E + v -zo roB_o V_oBro ) (VroB_l V$oBrl) +

Pvl2

(Ezl + VroB_l- V¢oBrl) (VroB¢o- V$oBr_) ;

(Ezo + VroB_o- V_oBro)(VrlB_o- V_lBro) +

+ (VrlB_o- v¢iBro)(VroB$o- V_oBro) ; (4.3.4)
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Lvl = Lvl I ÷ Lvl 2

where

Lvl I = 2 (Ezo

Lvl 2 = 2 (Ezo

+ VroB¢o- V_oBro) (Ezl + VroB_l- V¢oBrl) ;

÷ VroB¢o-V¢oBo) (VriB¢o-V¢lBro)(n.3.5)

and finally

Pevl = Pevll + Pevl2

where

- + - B¢l)
Pevll -2 EzoEzl Ezo (V_)oBrl Vro

+ Ezl (V¢oBro - VroB¢o )

Pevl2 = Ezo (v_IBro- VrlB$o)
(n.3.6)

The equations defining Pvll' Lvll' Pevll' represent the power con-

version due to the interaction of the unperturbed velocity field

with the first order electromagnetic field components. The remain-

ing three equations defining Pvl2' Lvl2' and Pevl2 correspond to

the interaction of the perturbation velocity field with the unper-

turbed elec tromagnetic fields.

Since the above expressions represent power densities, the

total power converted in the generator chamber is given by the

corresponding volume integrals :
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Pli

Lli

Plei

f FI rdrd  z= J J Pvli

o o Po

L 2_SI= _ _ Lvli r dr d* dz

o o Po

F _ r dr d_ dz
= J J ,. Pevli

o o Po

i = I, 2 (4.3.7)

In fact the three above quantities are not independent since

Plei = Pli- LIi ; i = I, 2 (4.3.8)

Thus calculating any two of the above integrals the third

quantity can be computed using equation (4.3.8).

Performing the integrations indicated the following expres-

sions are obtained:

Pll = m _ Z {( ) _(_Q_2- pI2VI2
s--± 2 ') Cs -

Q2 2 2
- Pl VI )

- PI¥IQAs ) If(star) +((' _ " Ds - PIVIQBs ) Kl(Smr) ]

- --_ [CQAs + PIVICs ) Io(smr) - (QBs + PIVIDs ) Ko(smr) ]

S m Q2 + pl2Vl2 2 r_+ _ (AsIl(smr) + BsKl(Smr)) - " shm2 .... +

+ _s (Q2 + pi2Vi 2) Cs

_ 12s (Q2 + pi2Vi 2) Ds

_ r-I lo(smr) dr

F r-I Ko(smr ) dr }Pl

Po

(4.3.9)
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F (star)dr and [ r-I Ko(smr)dr
The two integrals r-I I°

indicated in the above expression can be evaluated numerically,

using the series-definition of the modified Bessel functions, for

example.

Pell = V Z _ rs=i

I
+ U- [(QAs

S m

+ PiVlCs ) I° (star) -

22

(QBs + PlVIDs ) Ko (smr)] - _ r-y-
S m

_s(Io(smr) -

2II(smr) 2Kl(Smr)

star ) - D (Ko(smr) +S s_r

PI

D (Asll(smr)+ BsKl(smr))}

Po

(4.3.10)

Furthermore, the integrals ex_pressing the interaction of the per-

turbation velocity field with. the unperturbed electromagnetic

field can be written as follows:

Pl

PI2 = _ _2 - _ r2)]

Po

+

+ # PIVIS _S r2 - 2'_ pl -

Po

PI

- #S[(Q,I + PIVI#2 ) +

Po
Pl

¢i *2+ 2 (Q _- + PiVi _- ) dr]

Po

(L.3.n)
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where the first order stream functions ¢I' _2 and _3 are given by

equations (3.1.37) to (3.1.39).

Finally, the net or effective power ger,erated by the inter-

action of the perturbation velocity with the unperturbed electro-

magretic fields is _iver, as

2 PI PI

Pel2 = _,_S [_ (_ r - 2_2 ) -
Po

2 -'

r _3 dr] (_4.3.12)
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V. RESULTSANDCONCLUSIONS

I. Numerical Com_utations

The follo_in_ dimensionless quantities have been co_uted

for a numberof basic hydrodynamic and geometric inout parameters:

a) the zeroth order average po%;er density
o

b) the zeroth order average ohmic loss density,
o

c) the zeroth order average net (i.e. effective) power den-

sity, Peo

d) the first order average net Dower density Pel

e) the electrical efficiency of the power converter system

based on zeroth order quantities 0.

The average power densities described above are defined as

power produced in the generator chamber divided by the volume of

the chamber :

vol.

P
= _ ; where

_Pdv

v

= I dv

v

(5.1.1)

The average power densities (i.e. average power generated per

unit volume of the generator chamber) give a convenient basis for

comparison of the performance data obtained for different geometric

configurations and input parameters.
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Since

(P) dimensional
V

= 2 and
Pv c(_V)2 Bo

Vol. =
(Vol.) dimensional

(AR)3

(5.1.2)

the dimensional average power density can be obtained for each

particular application by computing the following quantity:

( P - f(,'V)2Bo t
vo---[._dimensional = P\ (/_R) 3 ,,) (5.1.3)

where _ is defined by equation (5.1.1) and is computed for various

sets of input parameters. The numerical results are tabulated be-

low.

The efficiency computations are based on the zeroth order

quantities. The first order net power has been also comDuted, its

influence on the zeroth order quantities is, however, negligible.

The following dimensionless quantities and ratios were

chosen as basic parameters (i.e. input data for the subsequent

calculations:

the injection velocity:

the ratio of the exit velocity and the

injection velocity:

(vI )
non dim.

Vo/V I
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the radius ratio of the inside and

the outside cylinders:

the ratio of the length of the annulus

and the radius of the outside cylinder:

the angular velocity of the magnetic

field :

Ro/5

O3

Introducing the notation

VI --Vo L

m _ ;A- TI ; LI -= R_
(5.1.4)

the above quantities can be written as

(vI)
non dim. = _- 1 ;

/M
(vo)

non dim. _- i ;

(_) non dim. D- I ;

1
(%)

non dim. 1-

(Ro) --_/_ ;
non dim. 1 -

(5.1.5)

where _ = Ro/_ as has been defined previously.

The length ratios LI, enters in the definition of the para-
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meter "m" applied throughout the finite Fourier transforms and it

can be written now as

(5.1.6)
m:

LI

The parameter _ is closely related to the slip factor s,

defined in the previous section. In fact, for the slip factor

s, measured at the outside radius _ the following relation can

be derived:

= 1 - s ; or s = 1 - _ (5.1.7)

The zero slip condition corresponds to _ = I. One may note, how-

ever, even if the O = 1 condition is satisfied at the outer radius_

for the present configuration the bulk of the fluid will still

have an excess velocity over the propagating magnetic field due

to the vortex type velocity distribution given as v_ = (PiVi/r).

The larger the duct width, AR = _ - Ro, is, the farther is

the bulk of the fluid from the no-slip condition, even if _ = 1.

Throughout all computation the magnitude of the exit velocity

was assumed to be 1% of that of the injection velocity which cor-

responds to _/_ = --.O1.

The choice of _ is such that for reasonable generator sizes

and commercially available frequencies (60 cycles per sec., for

example) the injection velocity would have a value at which the

fluid can be still treated as an incompressible medium. Th_ con-
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dition is satisfied forJ_ = 1.5.

The length ratio L I varies between the limits 1.0 and h.O

which correspond to reasonable design configurations. For one set

of input data the length ratio L I = 50.0 was chosen to obtain in-

formation about the performance characteristics correspording to

reduced end-plate effects.

The magnetic pressure coefficient S is assumed to equal to

unity.

For a laboratory size generator (RI = 0.5 m to 1,0 m) onerat-

inK on a working medium whose electrical conductivity does not ex-

ceed I00 mho/m the above assumptions restrict the values of the

magnetic Reynolds number so that Rm < .O1. Since the nondLmensional

first order Dower output was found to be of the same order of mag-

nitude as the correspondin_F zeroth order power, its effect on the

performance cbaracteristics is negligible.

A "Burroughs 220" digital computer was used for the perform-

ance calculations.

The numerical results are tabulated as follows :
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= 1.5 L I = 1.0

_e
/zer_thh _ero_bh

\order7 \order/

•5 .9634 .1455 .1510

.6 .6259 .1332 .2123

.7 .4082 .1222 .2994

.75 .3291 .1165 .3538

.8 .2651 .1102 .4156

.85 .2135 .1031 .4830

_0' _eo

1.0

.8

.6

.4

.2
Pa_

_.Po

\ /

if "_

0
.5 .6 .7 .8 .9

m

The plot of the average oower density P^ and average ef-

fective power density ;eo vs. th.e radiu_ ratio _ for

.5

.4

.3

.2

.I

B

J_4 = 1.5 L I = 1.0
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/_- = 1.5 LI = 2.O

.5

.6

.7

.75

.8

.85

Po, Peo

° 
order /

?.12o4

1.4994

1.Oh66

•8738

.7365

.6170

zere_h_

rder )

.5495

.4863

.4251

•3945

.3640

.3333

.2591

.3273

.4o61

.4493

.4943

.54o3

2.2

1.8

1.4

I.O

0.6

0.2

\

J
v

f
J

 .jr

.5 .6 .7 .8 .9

The plot of the average power density _o and a_rage ef-

fective po_r density Peo vs. the radius ratio _ for

_(I = 1.5 LZ = 2.o

.6

.5

.4

3

2



TABLE NO. 3

_0.= 1.5

-117-

LI = 4.0

.5

.6

.7

.75

.8

.85

PO,%O

ZerSth_

rder J

3.5045

2.6173

1,9591

1 •6927

1.4595

1.2554

er_%
rder J

1.0688

.9705

.8600

.811h

.7554

.6980

• 3050

•3708

.4420

.4794

.5175

.5560

3.5

3.0

2.5

2.0

1.5

1.0_

.5

\
\

J
f

jf
-,,.,

.5 .6 .7' .8 .9

The plot of the average power density _ and average el-

- vs. the radiu_ ratio _ forfective power density Peo

31 = 1.5 :'i = 4.o

.7

.6

5

.4

.3

.2
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fl-- 1.5 LI -- I0.0

_o
_ero_

_rder/ _rder I

.5 4.57_ 1.4734 .3224

.6 3.5388 1.3671 .3863

.7 2.7445 1.2461 .4540

.75 2.4128 1.1803 .4892

.8 2.1129 I.I_3 .5250

.85 1.8577 1.0365 .56_

PO ,Peo ,/

,

,

_°

,

I °

\
f/

.6

.5

,4

3

2

0
.5 .6 .7 .8 .9

The plot of the average power density _ and average ef-

- vs. the radiu_ ratio _ forfective Dower density Peo

= 1.5 LI = lo.o
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LI = 50.0

O eo

.5

.6

.7

.75

.8

.85

.9

.99

Po,Peo

54.437

39.69

28.06

23.39

18.94

14.97

11.35

5.95

22.65

19.97

16.78

15.12

13.22

11.26

9.14

5.19

.4161

.5033

.5979

.6466

.6980

.7517

.8058

.8769

50\
\

4O

9

8

7

.7 .8 .9 1.0

The plot of the average power density _ and average effecti_

power density Peo vs. the radius ratio _ for

- I.I LI - 50.0
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TABLE NO. 6

- .85

= 1.5

LI

1.0

2.0

4.0

I0.0

.2830

.5403

.556o

.56_

.6C

55

.5O

.40
O

f

2. 4. 6. 8. I0.
L!

The plot of the efficiency _ vs. the length ratio LI for

_ .85 n -- 1.5
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2. Discussion of the Results.

The numerical data tabulated in the previous section are

indicative of the performance characteristics of a vortex type

MHD induction generator and can also be used for comparing the

system discussed here with a linear induction generator, analyzed

by Bernstein (ref. [12] ).

An inspection of the tabulated results reveals the follow-

ing :

As the width of the duct decreases (i.e. _ increases) the

average power generated per unit volume decreases, but at the

same time the efficiency of the conversion cycle increases. Thus

the effective power decreases at a much smaller rate than the

total power. Both the total and the effective power decrease

quite rapidly at small values of 6, the slope of the power curves

decreases as _ -> 1.

Furthermore, with the increase of the length of the annulus

(i.e. of the LI ratio) both the power output per unit volume (in-

cluding th% total and the effective powers) and the cycle effi-

ciency increase. The improvement of the performance character-

istics corresponding to increasing LI ratio is more pronounced

at small values of LI (LI _ 0 (1)). For 1 << LI the efficiency

changes very slowly as can be seen from Table No. 6.

The changes described above correspond to a given ratio of

injection to phase velocity, D.
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The decrease of the power generated per unit volume and the

increase of the efficiency corresponding to increasing _ can be

explained as follows : as the width of the duct decreases the

largest value of the tangential velocity (v_ = PlVl/r) is re-

duced for a given (constant) injection velocity.

Thus the bulk of the fluid moves with a reduced average vel-

ocity. For a given n, where i < Q (that is, given an inJecticn

velocity exceeding the phase velocity) the reduction of the aver-

age fluid velocity reduces the actual slip between the bulk of the

fluid and the propagating magnetic field.

Equation (4.1.9a) indicates (see also ref. F12] ), that the

smaller the slip is the larger the efficiency of the energy-con-

version process. Zero slip corresponds to maximum efficiency and

minimum (i.e. zero) power production, the latter being caused by

the absence of intersection of the magnetic flux lines by the mov-

ing conductor. Hence, the reduction of the average fluid velocity,

corresponding to large values of p, causes an increase of the con-

version efficiency due to the reduced slip factor on ane hand, and

it reduces the power generated per unit volume due to the decreased

interaction between the velocity and electromagnetic fields on the

other hand.

Furthermore, the above argument indicates that for a given

value of the duct width (i.e. fixed p ratio) the po_r conversion

density can be increased by increasing the inJectic_ to phase vel-
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ocity ratio: _.

The general improvement of the operational characteristics

with the increase of the annulus length is explained by the fact

that the relative magnitude of the eddy (or closing) currents is

reduced as the length of the cylinders increases. The end plate

effects are more pronounced for small values of the length ratio

LI (LI _< 3.0) and they become practically negligible when the

ratio LI = 6.0 is exceeded.

At this point comparison between the linear generator de-

scribed in reference [12] by Bernstein and the limiting case of

the vortex generator configuration discussed here can be made.

Bernstein analyzed the motion of a conducting medium mov-

ing in the x direction with a given, uniform velocity V betweenx

two infinite, parallel planes placed at y = + a and its interac-

tion with a traveling magnetic field given by B _ const. [exp
y-

(kx - _t)] propagating in the x direction with a phase velocity

equal to _/k. The induced currents are directed along the z-axls

and their path is not restricted by any nonconducting end plates.

The present analysis differs in two significant aspects

from Bernsteln's in that it is based upon a finite configuration

and a realistic velocity distribution. The currents are deflec-

ted from their principal direction by nonconducting end plates,

placed at a finite distance from each other.

In the limiting case, however, when the vortex velocity dis-
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tribution approaches a uniform velocity (that is, when the width

of the duct is reduced to near zero) and the end plates of the

cylindrical annulus are separated by a considerable distance (the

length of the cylinder approaches to infinity); the characteris-

tics of the vortex generator should converge to those of a linear

generator.

Indeed, when LI -_ co, p-_ 1.O and _ -_ 1.O, the efficiency

of the conversion cycle should approach its limiting value: _--_

i.O.

In order to check the consistency of the numerical computa-

tions presented here, a set of input parameters were chosen so

that the asymptotic value of the efficiency could be approached.

For LI = 50.0, p-- .99 and _ = I.I the electrical effi-

ciency computed is .8769 (see Table 5). For the corresponding

linear generator with s = -.1 (s = I -_) the efficiency can be

computed using the expression given by Bernstein:

-- 1 = .909. The difference between the two efficiencies

is due to the end plate effects. Although the LI = 50.O ratio

reduces the relative importance of the closing currents substan-

tially, it does not eliminate them completely.

Finally, the question as to which of the configurations (linear

or vortex) is better, cannot be answered until the characteristics

of a finite linear generator are known.
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3. Summary

The primary purpose of the present analysis was to gain in-

formation about the performance characteristics of a vortex type

magnetohydrodynamic AC generator. The configuration chosen for

the analysis was suggested by its compactness and the relatively

small amount of work done so far in the field of rotating magneto-

hydrodynamic flows with emphasis on power conversion. The analysis

has been carried out by taking advantage of perturbation technique

and other approximate methods used in operational mathematics.

The numerical computations were carried out on an electronic digi-

tal computer; the obtained results are consistent with data, pub-

lished by other authors. In particular, for high length-radius

ratios, the generator characteristics converge to those of a lin-

ear generator.

For a given injection to phase velocity ratio _, the power

output is largest at small radius ratios 8, but the operation is

the least efficient there. As _ increases the efficiency increases,

but the power output decreases. Thus the choice of design paramet-

ers for a practical generator must be based on a compromise between

efficient operation and maximum power output. The range .75 _<

seems to be best for practical applications.

Since the improvement of the efficiency with increasing the

length ratio LI is quite slow after the ratio LI _ 6.0 is exceeded,

the practical design values should be chosen in the interval 3.0 <

_<6.o.
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LIST OF SYMBOLS

als,bls,Cls,_s

a2s,b2s,C_s,_s

a3s,b3s,C3s,d3s

As,Bs,Cs,Ds

AII,A21,A31,BII,

B21,B31,C21,C22,C32

A
O

Cij

D

E

fn (r)

fi(r,s,z); i = 1,2

F

F

(r)
FIs , F2s (r)

(*) F2s(4)FIs ,

(z) (z)
FIs , F2s

F. (r),F2(r),F3 (r)

g(r)

H

constants, defined by Eq. (3.2.40)

constants, defined by Sq. (3.2.41)

constants, defined by Eq. (3.2.41)

constants, defined by Eqs. (2.2.39),

(2.2.40)

constants defined by Eqs. (3.1.43)

total area of exit ports (m2)

magnetic induction field (volt sec/m 2)

function obtained through a finite

Fourier cosine transform

constant defined by Eq. (2.1.11)

electrical field intensity (volt/m)

function defined by _q. (3.1.28)

functions defined by Eq. (3.2.11)

body force (Kg)

function defined by Eq. (3.1.17)

functions defined by Eqs. (4.2.9)

functions defined by Eqs. (4.2.10)

functions defined by Eqs. (4.2.11)

functions defined by Eq. (3.1.1_)

function defined by Eq. (3.1.24)

magnetic field intensi_y (amp/m)
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-@

I

J
O

K

K

L

LI

LHS

m

M

MHD

N

P

Pl

PT

P
ev

P

P
e

Q

r

r I

r 1

current density (amp/m2)

current density in field coils (amp/m 2)

thermal conductivity (Cal/m.sec.°K)

surface current density (amp/m 2 )

length of the generator chamber (m)

ohmic losses per unit volume (dimensionless)

average ohmic losses per unit volume (dimensionless)

(-length ratio

left hand side

constant (-  IT*)

constant defined by Eq. (3.1.17)

"magnetehydrodynamic"

magnetic interaction parameter

pressure (Kg/m 2)

injection pressure (Kg/m 2)

total pressure (Kg/m 2)

power per unit volume (dimensionless)

effective power per unit volume (dimensionless)

average power per unit volume (dimensionless)

average net power per unit volume (dimensionless)

constant related to the total volume flow

radius (m)

radius ratio defined by Eq. (2.1.19)

r us ( - mr)



R
O

Re

Rm

RHS

S

S

sij

t

T

V

VI

V
o

Z

z 1

Z_(r)

AV

P

6

6

X
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inside radius (m)

outside radius C_)

hydroc_rnamic Reynolds number

magnetic Reynolds number

"right hand side"

slip factor defined by Eq. (4.1.9)

magnetic pressure coefficient

function obtained through a finite Fourier
sine transform

time (sec. )

temperature (°K)

velocity (m/sec.)

injection velocity (m/sec.)

exit velocity (m/sec.)

coordinate (m)

coordinate ( = mz )

cylindrical function

duct width ( - _ - _ ) (m)

velocity differential ( " VI - OJ_) (m)

radius ratio ( = _/_ )

ratio defined by Eq. (3.1.17)

electric permittivity (coul2/Kg.m 2)

electrical efficiency

index for Bessel functions

magnetic permeability (volt. sec/amp.m)

kinetic viscosity (m2/sec.)
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P

Pe

Po

PI

hydrod_nm_ic density (kgm/m 3)

electrical charge density (cou X/m 3)

dimensionless radius ( = RO/_ R)

dimensionless radius ( = RI/AR)

electrical conductivity (a_p/volt m)

azimuthal coordinate

potential function describing the zeroth order
electrostatic field

hydrodyn_ic dissipation function

stream function for first order velocity

angular velocity (I/sec)

(Y

(O

Subsc,ri_ts

x,y,z

r_¢jz

0

1

C

n

P

t

components along the corresponding coordinate axes

zeroth order

first order

complementary

normal

particular

tangential

Superscripts

(') quantity expressed in a rotating coordinate system;

or derivative with respect to _,

.
nondimenslonal quantity
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